WEST VIRGINIA DEPARTMENT OF TRANSPORTATION ## **Division of Highways** **Earl Ray Tomblin** Governor 1900 Kanawha Boulevard East • Building Five • Room 110 Charleston, West Virginia 25305-0430 • (304) 558-3505 Paul A. Mattox, Jr., P. E. Secretary of Transportation/ Commissioner of Highways June 26, 2013 ### MEMORANDUM TO: **ALL DM EMPLOYEES** ALL DISTRICT ENGINEERS/MANAGERS ALL DISTRICT MATERIALS SUPERVISORS FROM: AARON C. GILLISPIE, P. E. DIRECTOR MATERIALS CONTROL, SOILS AND TESTING DIVISION SUBJECT: MATERIALS PROCEDURE 603.10.40 INSPECTION AND ACCEPTANCE PROCEDURES FOR PRESTRESSED CONCRETE BRIDGE MEMBERS The final version of the subject Materials Procedure (MP) is attached. Should you require additional information, please feel free to contact me. ACG:s Attachment cc: DM - Gillispie, Wentz, Mance, Brayack DC - Holliday ISSUED: JULY 2003 1ST REVISION: NOV 2011 2nd REVISION: JUNE 2013 Page 1 of 6 ### WEST VIRGINIA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING DIVISION ### MATERIALS PROCEDURE | INSPECTION AND | ACCEPTANCE PROCEDURES | |-----------------|-------------------------| | FOR PRESTRESSED | CONCRETE BRIDGE MEMBERS | | 1.0 | PURPOSE | |-----|---------| | | | - 1.1 To set forth procedures for the inspection and acceptance of prestressed concrete bridge members, including beams, pier caps, deck panels, and any other prestressed members, and the approval of the plants at which they are fabricated. - 2.0 SCOPE - 2.1 This procedure will apply to all prestressed concrete bridge members supplied for use on West Virginia Division of Highways (WVDOH) projects and to all prestressed concrete bridge member fabricators that supply material for use on WVDOH projects. - 3.0 INSPECTION - 3.1 All prestressed concrete bridge member fabricators (hereafter referred to as the Fabricator) shall be approved by Materials Control, Soils and Testing (MCS&T) Division prior to the start of any work for the WVDOH. If not listed on the WVDOH Approved List of Precast Concrete Fabricators, a Fabricator shall contact MCS&T Division a minimum of six weeks prior to the planned date on which fabrication is to begin. - The process for approving a Fabricator shall include, but not be limited to, an onsite visit to the fabrication plant by a WVDOH representative from MCS&T Division. During this visit, the WVDOH Quality Assurance (QA) personnel shall inspect the fabrication facility and Quality Control (QC) lab, meet with QC and other key personnel from the Fabricator, and sample component materials which will be used in fabrication of precast items. ISSUED: JULY 2003 1ST REVISION: NOV 2011 2nd REVISION: JUNE 2013 Page 2 of 6 - 3.1.1.1 Sampling and testing of component materials shall be done in accordance with MP 603.02.10. All component materials shall be approved prior to the start of fabrication. - 3.1.1.2 Personnel from the Fabricator required to be present during the initial on-site visit and meeting between WVDOH and Fabricator personnel shall include representatives from Production and Quality Control. Any questions and concerns regarding WVDOH requirements, including applicable Specifications, Materials Procedure (MP's), Standard Details, and QC/QA Inspections shall be addressed at this meeting. - 3.1.1.3 Prior to beginning fabrication of any prestressed concrete bridge members, the Fabricator shall provide written notification to MCS&T Division at least one calendar week in advance of the date on which fabrication is to begin. After fabrication has begun, the Fabricator shall keep MCS&T Division and the Inspector (whether a WVDOH employee or a contract employee representing the WVDOH) informed in advance of the days on which fabrication will take place. - 3.1.2 Shop Drawings must be approved by the WVDOH prior to the start of any work by the Fabricator. The Inspector must have a copy of these approved shop drawings prior to start of any work by the Fabricator. - 3.1.3 The Inspector, as a minimum, shall be registered with the Precast/Prestressed Concrete Institute (PCI) as a Level II Quality Control Technician. - 3.2 The Inspector shall be present at any or all times during fabrication including casting bed layout, steel placement, stressing operations, concrete testing, placing, and finishing, detensioning operations, camber measurements, testing hardened concrete cylinders, post-pour inspections, and repairs. - After fabrication is completed and prior to shipment, the Fabricator shall provide MCS&T Division with a written request for Final Inspection a minimum of one calendar week prior to the desired date of inspection. This written request may be in the form of an e-mail. Upon receipt of the written request for Final Inspection from the Fabricator, MCS&T Division will notify the Fabricator of the earliest possible date of this inspection. Effective communication from the Fabricator to MCS&T Division and Consultant Inspection Agency is key to avoiding any scheduling conflicts regarding Final Inspection. - 3.4 At Final Inspection, the Inspector shall witness any compressive strength tests which may be required, inspect repairs as needed, and conduct a thorough visual examination of each member. After the Final Inspection is completed, the Inspector ISSUED: JULY 2003 1ST REVISION: NOV 2011 2nd REVISION: JUNE 2013 Page 3 of 6 shall provide the Fabricator with a copy of the inspection report documenting the findings of the Final Inspection and any other observations or notes taken by the Inspector during fabrication, a completed copy of the Inspector's checklist. A copy of the Inspector's daily reports, a copy of the final inspection report, and all other pertinent information provided to the Inspector by the Fabricator shall be kept on file by MCS&T Division. - 3.5 The Inspector shall use the checklist and inspection forms which are included as Attachments to this MP. The Fabricator shall also document all required information on the applicable Attachments. - 4.0 ACCEPTANCE - 4.1 Upon completion of the inspection of a member, the subject member shall be classified in one of two ways. The first way is that the member does not contain any defects. The second way is that the member contains some type of defect. - 4.1.1 If a member meets all specification requirements and does not contain any defects, the Inspector will stamp the subject member as accepted by MCS&T Division. - 4.2 If a member contains some type of defect, it will be classified into one of the following three categories. These categories are: Category I (Cosmetic Defects), Category II (Dimensional Tolerances), and Category III (Structural Defects). - 4.2.1 Category I defects include cosmetic defects such as minor spalls with no exposed reinforcing steel or prestressing strand, bug holes and minor surface irregularities, etc. Category I defects shall also include cracks up to and including 16 mils in width for which repair procedures are addressed by the standard specifications. Prior to the start of fabrication, the Fabricator shall submit to MCS&T Division, for approval, the proposed repair procedures for Category I defects which may be encountered. - 4.2.1.1 Any Category I defect(s) will first be noted by the Inspector and may be subsequently repaired by the Fabricator as per the Fabricator's pre-approved repair procedure. The Inspector shall inspect the repair(s), and if the repair(s) is satisfactory, and if all other aspects of the member meet specifications, the Inspector will stamp the subject member as accepted by MCS&T Division. - 4.2.2 Category II addresses any aspect of a member which exceeds the dimensional tolerances set forth in the Specifications. The Inspector will document that variance(s) and notify the Fabricator. At this point, the Fabricator may seek acceptance of the subject member by sending a written notification to the Contractor ISSUED: JULY 2003 1ST REVISION: NOV 2011 2nd REVISION: JUNE 2013 Page 4 of 6 including a copy of the Inspector's report and any other pertinent data. If the Contractor agrees to accept the subject member with the defect at the original contract price, then the Contractor shall provide a written statement to District Construction personnel and MCS&T Division stating such. The Contractor, or his designated representative (i.e. the Fabricator), shall then contact MCS&T Division and provide them with a report containing all relevant information and a detailed summary of the dimensional variation(s) in the subject member for which the Fabricator is seeking acceptance. MCS&T Division shall then contact the Designer (either Engineering Division, or the appropriate District) and District Construction personnel and forward this information to them. If the member was designed by a Consultant, Engineering Division may forward the information to the appropriate Consultant. The Designer will then analyze the dimensional variation(s) and provide a written statement to the Contractor, the Fabricator, MCS&T Division, and District Construction personnel as to whether or not it will affect the structural performance of the subject member. After receipt of that statement from the Designer, District Construction personnel shall then provide a written statement to the Contractor, the Fabricator, and MCS&T Division as to whether or not the dimensional variation will create construction difficulties. - 4.2.2.2 If the Designer states that this dimensional variation(s) will adversely affect the structural performance of the member, or if District Construction states that it will create construction difficulties, or if the Contractor does not agree to accept the subject member with the defect at the original contract price, MCS&T Division will not accept the subject member. MCS&T Division will assign a laboratory number to this subject member which notes that the member does not meet specifications, and will include a thorough explanation as to why the member does not meet specification requirements. If acceptance of the subject member is still desired, the acceptance would need to be by the District by means of a District Materials Inspection Report (DMIR). - 4.2.2.3 If the Designer does not feel qualified to perform the analysis outlined in Section 4.2.2 and make the decision as to whether or not the dimensional variation will affect the structural performance of the subject member, the Designer shall inform MCS&T Division of this fact, and MCS&T Division will relay this to the Fabricator. The Fabricator may then elect to have the defect(s) evaluated by a Division approved, qualified, independent Engineer in the same manner that the Designer would analyze the defect(s). The Division would then review and take into consideration this Engineer's analysis as part of the acceptance decision. - 4.2.3 Category III defects include structural defects (spalls that expose prestressing strand or reinforcing steel, honeycombed areas, etc.) and cracks for which the ISSUED: JULY 2003 1ST REVISION: NOV 2011 2nd REVISION: JUNE 2013 Page 5 of 6 specifications require evaluation by the Engineer. If a member contains any structural defect(s), the defect(s) will be noted in the Inspector's report. Fabricator shall then provide the Contractor with detailed information regarding the type, size, and location of the defect(s). It is then the Contractor's, or his designated representative's, responsibility to contact MCS&T Division and provide them with a report containing all relevant information and a detailed summary of the structural defect(s) in the subject member for which the Fabricator is seeking acceptance. MCS&T Division shall then contact the Designer (either Engineering Division, or the appropriate District) and forward this information to them. MCS&T Division shall also contact District Construction to inform them of the situation. In situations when the member(s) was designed by a Consultant, Engineering Division may forward the information to the appropriate Consultant. The Designer will then analyze the subject defect(s) and provide a written statement to the Contractor, the Fabricator, District Construction, and to MCS&T Division as to the effect of the defect(s), if the member will be structurally adequate, if a repair may be made, and if, in their opinion, the service life of the member will be reduced because of the defect. It shall also be documented in the Inspector's report whether or not, in the opinion of the Inspector, the service life of the member will be reduced because of the defect. - 4.2.3.1 If the Designer does not feel qualified to make the decision concerning the effect of the defect(s), they shall inform MCS&T Division of this fact, and MCS&T Division will relay this to the Fabricator. The Fabricator may then elect to have the defect(s) evaluated by a Division approved, qualified, independent Engineer in the same manner that the Designer would analyze the defect(s). The Division would then review and take into consideration this Engineer's analysis as part of the acceptance decision. - 4.2.3.2 Category III defect Scenario 1 Category III defect which will adversely affect the structural performance of the member: If the Designer states that the defect(s) will adversely affect the structural performance of the subject member, the Division will not accept the subject member. - 4.2.3.3 Category III defect Scenario 2 Category III defect which will not adversely affect the structural performance of the member and will not reduce the service life of the member: If the Designer states that the defect(s) will not adversely affect the structural performance of the subject member, and that a repair should be made, and if MCS&T Division and the Designer agree that the service life of the member will not be reduced, the Fabricator shall submit a repair procedure to MCS&T Division for approval. If the repair procedure is approved, the Fabricator may proceed with MP 603.10.40 ISSUED: JULY 2003 1ST REVISION: NOV 2011 2nd REVISION: JUNE 2013 Page 6 of 6 the approved repairs in the presence of the Inspector. If the repair(s) is satisfactory, the Inspector will stamp the subject member as accepted by MCS&T Division. 4.2.3.4 Category III defect Scenario 3 – Category III defect which will not adversely affect the structural performance of the member but which will reduce the service life of the member: If the Designer states that the defect(s) will not adversely affect the structural performance of the subject member, and that a repair should be made, but if either MCS&T Division or the Designer feel that the service life of the member will be reduced, the Fabricator may submit a repair procedure to MCS&T Division for approval. If the repair procedure is approved, the Fabricator may proceed with the approved repairs in the presence of the Inspector. After the inspection of the repair(s), the Inspector will document whether or not the repair(s) is satisfactory. Since the service life of the member will be reduced, MCS&T Division will not accept the subject member. MCS&T Division will assign a laboratory number to this member, which notes that the member does not meet specifications, and will include a thorough explanation as to why the member does not meet specification MCS&T Division will then contact the District, forward all information relevant to the subject member to the District, and based on the quality of the repairs and the degree to which the service life of the member will be reduced, it is the District's option whether or not to accept the subject member. If the District decides to accept the member, it will be paid for at a reduced contract unit bid price based on the Contractor's invoiced cost of the fabricated member as billed by the Fabricator. This cost does not include the cost of items such as bearing pads, guardrail items, delivery charges, etc., which are incidental to the cost of the member. If the District accepts the subject member with this type of defect and reduced service life, it shall be accepted by means of a DMIR. Aaron C. Gillispie, P. E., Director Materials Control, Soils and Testing Division ACG:Ms # PRESTRESSED CONCRETE BRIDGE BEAMS WYDOT DIVISION OF HIGHWAYS MCS&T DIVISION INSPECTION CHECKLIST | PROJECT NAME: | | | A TOTAL AND | AUTHORIZATION: | Maria Burthall | |----------------------|-------------------------|-----------------|--------------|--------------------------|----------------| | PROJECT NUMBER: (| State) | | (Fed.) | | | | BRIDGE NUMBER: _ | 7544 E | COUNTY: | | DISTRICT: | | | MANUFACTURER: | | | The state of | JOB NUMBER: _ | | | PROPOSED PRODUC | TION DATE(S): | | | A CONTRACT OF THE SECOND | | | INSPECTION AGENC | Y: | INSPECTO | R(S): | | | | | | Prelimina | ary Verific | cations | | | SHOP DRAWING REV | /IEW | | | | | | Approval Date: | | Approved By: | | | 11 1 1 | | | | | | se | at 28 days | | Beam Type: | | | | Total Number of Beams: _ | | | Finish Requirements | : Тор: | Bottom/Sides: | | Ends: | | | Notes: | | The second of | | | | | | | | | | | | • | | Torrest Control | | | | | CONCRETE COMPON | ENTS | | | | | | Cement Source: | A DOMESTIC AND ADDRESS. | | Mix Desig | gn Lab Number: | | | Cement Type: | | | | Lab Number: | | | Coarse Aggregate: _ | | | | Lab Number: | | | Fine Aggregate: | | | | Lab Number: | | | Batch Water Source: | | | Lab Number | r (if applicable): | 4 - 1 - 1 | | Admixtures: | | | | | | | STEEL COMPONENTS | | | | | | | Bearing Plate: | Fabricator: | | A Company | | EAE ! | | | Mill Certs: | Galvanize C | ert.: | Lab Number: | | | Reinforcement: Sup | plier(s): | | | | | | | Description: | | | Lab Number: | | | | | | | | | | Prestressing Strand: | Manufacturer: | | | Description: | | | | Coil Numbers: _ | | | | Early . | | | Lab Numbers: | | | | | | Inserts: Suppl | ier(s): | | |----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Description: | Lab Number: | | | | | | | | | | SHIPLOOSE MATE | RIAL | | | Sole Plate: | Fabricator: | | | | Mill Certs.: Galvanize Cert.: | Lab Number: | | Bearing Pad: | Fabricator: | | | | Inspected at: | Lab Number: | | Diaphragm: | Fabricator: | | | | Inspected at: | Lab Number: | | | | Lab Number: | | Anchor Rod: | Supplier: Description | ription: | | | Mill Certs.:Galvanize Cert.: | Lab Number: | | Repairs: | Approved Repair Procedure: | | | | Approved by: | Approval Date: | | | Repair Witnessed: | | | | Repair Satisfactory? | | | Comments: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A SAME OF THE | The state of s | | | | | | | | | | | | | | | | | | | | | | | | | ## Form Inspection (Pre-Placement) | BEAM NUMBER | The Sharper | A STATE OF THE PARTY OF | | | A NAME OF THE OWNER, OW | |------------------------------------------------------|----------------------|-------------------------|-------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Formwork constructed of metal w/ concrete foundation | | | | | | | Form clean & free of debris | 1 1 1 1 1 | | DE THE WAY | | CARAG | | Form dimensionally correct | 1 | | | ALC: NO. | L.O. | | Length (bulkhead to bulkhead) | | | | The Property of | GALL | | Depth of form | 1 143 | | F71.237 | 4 4 5 | TANK Y | | Width at top flange | 3- 11 1 | | K 100 K | And the | | | Width at bottom flange | | 100 | A ALEXANDER | | 1 7 / | | Width of web | 12 7 777 | | | | | | End square | | | | EL AND | Show I'v | | Skew dimensions | | 100 | No. of the | 4 7 1 | | | Location of inserts, sleeves, blockouts, etc. | | | | | 1791 | | Reinforcing steel (condition) | | 1 1 7 7 | | Carle | 1 | | Size and grade | 0 72 75 | | N. S. ARCH | 2 V/50-0 | 48 | | Location & lapping lengths | 2001 | 1 174 6 | Z. Aller | 1 4 1 1 1 1 | The state of | | Spacing & Clearances | | 7773 | | 4 | THE STATE OF | | Chairs, spacers properly used | | | - 41.0 | 1586 | 1 7 1 | | Hold Down locations (draped strand) | | 1000 | | | | | Form properly sealed at joints & edges | of the last | T UK | | July Well | | | Release agent applied | | | 1.4 | 165 | | | Strand Placement | 1 20 1 | But the | | Lagran T. | 10-10-1 | | Number of strand | THE THE | 1 1 141 | C W.C. | 30 M | 171-14 | | Strand location (vertical & horizontal) | | The same of | SE VICE | | 15 | | Strand free of damage or contaminants | | The Land | Fw/fac | 110 | 15.773 | | Strand Tensioning | | A COLUMN | Living to | 777 | Cytic. | | Jack & gauge calibration | and the state of the | 100 | Part at V | AUTO C | E TO LET | | Initial load | THE PARTY | 14 1 10 | DEC VALUE | No. of the last | 167 | | Final Load | | AND TO | enditure of | | 10-10 | | Elongation | 11 11 74 | F. Maria | | Mary Tark | TW. | | Theoretical vs. Actual (within 5%) | 100 | also The | | | | | Strand symmetrically loaded | 11/11/11 | 70 102 | -1-17 | | The same | | Check for strand slippage | | | V 1.50 | There's a | The state of s | | Bearing plate location | 1 | | 2.1 | San Land | 100 6 | | | | | 1,01101 | | 1 | ## **Concrete Placement** | Ambient temperature, weather conditions | | | | | | |--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|---------------|----------| | Concrete Temperature | 1000 | 1 to 100 | | | Jakes . | | Concrete quality (appearance) | TATE OF | | T and | Water Vie | 445 | | Placement (start/completion times) | | | | THE L | 14 | | 1 st Lift | 1 - 4 1 7 7 2 | territor office | 14-6-15-1 | | | | 2 nd Lift | 1407 | | | and in | 0.1 | | 3 rd Lift | TOWN THE TANK | | K HE | | Sec. 10 | | QC Tests performed per specification | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 44 | | | | Slump | | | | N. P. Van | Cont. of | | Air content | 1000 | THE REAL PROPERTY. | | | 1 | | Compressive strength cylinders | 1 4 1 | | Aleman II | | | | Concrete placed within specified time restrictions | THE STATE OF | | | W. Say | 177.8 | | Concrete properly vibrated | | | 147 65 | 11-16-15 | 199 | | External vibration applied | | 77.79 | THE TANK | 1977 | 1077 | | Internal vibration per specification | To the first | 18 10 | | | | | Top surface per specification | | 1115 | | 3 | | | Lifting loops per specification | 4 4 2 2 | Albert. | | | | | Curing per specification | | | | 16 | | | Heat sensors properly installed | A AT A STATE OF | | | | | | Beams adequately covered | | | | | 1 | | Compressive strength cylinders stored with beams | | | | 34. | | | Stress Transfer | The state of s | | | | | | Cylinders loaded to failure per specification | | The au | 100 | | de Tell | | Release strength met – record average of 2 tests (psi) | 100 | A STATE OF | Fig. 10 | Total Control | A Thomas | | Strands properly cut | 11 2 | -1 | | The said | 2000 | | Strands detensioned in specified sequence | | | | Me V | 221 | | | 1 | | | Participan | 100 | | | | | | | | ## **Product Inspection (Post-Placement)** | Visual inspection for damage | The state of s | 17.15 | | | 1 | |----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|-----------------------|--------------| | Note size & location of cracks, spalls, honeycomb, etc. | | MALE IN | 1879 | A COMP | - No. 12 | | Discuss damaged areas with QC Manager | | | E Land | | a Tend | | Beams in need of repair | | | M THE E | 1 1 1 1 1 | 7777 | | Repair method approved? | de la | F 17530 | 1000 | | There. | | Dimensional Tolerances met? | The District | | | A TOTAL | | | Length | 4 25 | | | S REST FOR | Day Co. | | Width(s) | 1012 0 | PATE A | | | | | Depth | | A. P. L. | E Waste | | | | Inserts, sleeves, etc. | 11.2 | 1-727 | 15 - 7 - 7 19 7 | Walter to the Control | Jan - a + s | | Stirrups (horiz.& vert. within tolerance) | | | | 7 5× 1.7 | THE NA | | Finish per specification | 100 | 1 | 1 18 1 | V V | N G of the | | Top scored per specification | | | The state of | AP LYL | HI COLOR | | Fascia finish as specified | 100 | BLASS. | A TOWN | 100 | 91 10 11 | | Camber | A AND IN | | | a Charles | s, other | | Lifting loops OK | 7 - 1914 | April 10 Page | A Section | | | | Beams properly transported | | | | Adv. Tu | A VENT | | Beams stored on proper dunnage at bearing points | # 10 m | - | | E PLEASURE | 777 | | Noticeable sweep? | 1 | 1000 | | AMEN ST | 1 134 | | | 1 | Hayle 118 | | | | | | 4.5 | | | | | | Design shipping strength (28 day) met? (avg of 2 tests) | | | Hall Harris | | 9 | | Repairs satisfactory | | ingling! | | Hall | THE STATE OF | | Beam stamped for shipment | | 100 | | | | | Concrete Sealer (Silane) applied as specified | | | | | | | Interior Sides blast cleaned (within 5 days of shipment) | | | | | | | | | | | N LANT | |