

Adaptive Traffic Signal Control

WVDOH/MPO/FHWA Planning Conference 10/3/2012

Andrew P. Nichols, PhD, PE Rahall Transportation Institute

Presentation Overview

- Traffic Signals 101
 - Types of Traffic Signal Control
 - Terminology Overview
- What is Adaptive Signal Control?
- Adaptive Systems in WV
- Preliminary Evaluation Results
 - Simulation
 - Field Data
- ▶ Planning for Traffic Signals

Types of Traffic Signal Control

Basic (Free) Operation

- With or without vehicle/pedestrian detection
- Commonly used for isolated intersections
- Green times programmed based on anticipated demand

Coordinated (Time-of-Day) Operation

- With or without vehicle/pedestrian detection
- Used in corridor or downtown grid signal systems
- Cycle, Offset, and Splits are the key parameters that are typically programmed for anticipated demand at different time periods

Adaptive Operation

- Requires vehicle detection
- Most systems dynamically adjust <u>Cycle</u>, <u>Offset</u>, <u>and Splits</u> based on current or historical demand

What is a Phase Split?

- Each signalized intersection movement is a phase
- ▶ 4-way intersection with left-turn arrows has 8 phases
- Split Time = Green + Yellow + All Red

What is a Phase Split?

- Phase split times are programmed to account for demand
- Duration can also be shortened with vehicle detection

What is a Cycle?

▶ The total time it takes to serve all phase splits

What is an Offset?

- Programmed for the "mainline" movement at each intersection to provide <u>progression</u> through the system
 - i.e., Offsetting the start of green

Consider a Northbound Phase 2 movement only:

Time-Space Diagram (NB)

Time-Space Diagram (Zero Offset)

Time-Space Diagram (w/ offsets)

Time-Space Diagram (w/ offsets)

Coordination Plans

- Traffic engineers can deploy multiple coordination plans to accommodate different traffic patterns
- ▶ How are these plans derived?

This process cannot account for all traffic patterns!

Star City Bridge, Morgantown Inbound Traffic on Saturday

When to start each Coordination Plan?

Star City Bridge, Morgantown Saturday Traffic Saturday I

Favor

Outbound!

Should offsets provide progression for INBOUND or OUTBOUND traffic?

What is Adaptive Signal Control?

- Respond more intelligently to fluctuations in traffic patterns (beyond shortening phase times with vehicle detection)
- All adaptive systems require vehicle detection
- Adjust phase split times
 - More/less time for a left-turn movements or side streets
- Adjust cycle length
 - Longer for congested periods, shorter for off-peak
- Adjust offsets
 - Accommodate inbound vs. outbound traffic
 - Account for change in traffic speeds due to severe weather

Adaptive Signal Control

- ▶ 20+ adaptive control systems on the market
- <1% of signals nationwide use adaptive technology</p>
- NONE of the systems are "plug and play"
- Each system is unique
- FHWA Every Day Counts Initiative
 - Identified ASC as being significantly underutilized
 - Providing some guidance on how to select a system
 - Developing guidelines on how to evaluate performance

Adaptive Systems in WV

- WVDOH operates traffic signals statewide
 - ➤ ~1,900 traffic signals
 - ► ~107 closed loop signal systems (running coordinated timings)
- Adaptive Signal Control Deployments
 - ► (16) Morgantown WV-705 Corridor (In Progress)
 - ▶ (5) Teays Valley SR-34 Corridor (Summer 2012)
 - ▶ (3) Elkins US-219 Corridor (In Progress)
 - ▶ (5) St. Albans US-60 Corridor (In Progress)
 - ▶ (8) Morgantown Beechurst/University Corridor (Spring 2013)
- Rahall Transportation Institute is managing and evaluating the performance of these systems

Adaptive Signal Control Evaluation

- Morgantown WV-705 Corridor
 - Adaptive System: ACS-Lite & Traffic Responsive Hybrid
 - Evaluation Mechanism
 - ▶ Intersection Delay & Progression Simulation using VISSIM
 - Travel Time Bluetooth & GPS
 - Safety Eventually crash records
- Teays Valley SR-34 Corridor
 - Adaptive System: InSync
 - Evaluation Mechanism
 - Travel Time GPS

WV 705 Signalized Intersections

WV 705 Traffic Generators

WV 705 Corridor

WV 705 System Evaluation with Simulation

- WV 705 corridor was modeled in VISSIM with traffic signal controller simulators to evaluate:
 - Free operation (no coordination)
 - Basic Coordination Plans (TOD)
 - ► TOD + Traffic Responsive (TR)
 - ► TOD + ACS-Lite (ACS)
 - TOD + TR + ACS (Adaptive)
- Total Delay and Hourly Delay Summarized
 - By System (All intersection movements)
 - By Mainline Movement (705 thru movements)
 - By Minor Movement (Left-turns and side-streets)

Cumulative Total Delay – University & Patteson

Time-of-Day

Cycle Time

Offset Adjustment Willowdale – Suncrest Town Center

Teays Valley WV-34 System Overview

Northbound - GPS Travel Time Weekday 7AM-11AM

Northbound - GPS Travel Time Weekday 11AM-2PM

Northbound - GPS Travel Time Weekday 2PM-6PM

Planning for Traffic Signals

- Most of the common planning software packages do not account for basic traffic signal operations, much less adaptive control
- Difficult to evaluate/predict the performance of an adaptive system to quantify the benefits
- If there are fluctuating traffic patterns, adaptive might be a good solution
- If a signal system is being upgraded, often the incremental cost for adaptive is insignificant

Contact Information

Andrew P. Nichols, PhD, PE

Director of ITS

Rahall Transportation Institute

Marshall University

Huntington, WV

304-696-3203

andrew.nichols@marshall.edu

