

Pathways to Automation: The Role of Vehicles and Infrastructure in a Future Transportation Environment

Planning Conference 2014
West Virginia DOT/FHWA/MPO

Joseph I. Peters, Ph.D.

Director, Office of Operations Research and Development
Federal Highway Administration
October 7, 2014

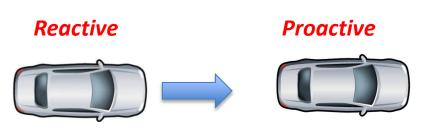
U.S. Department of Transportation FEDERAL HIGHWAY ADMINISTRATION

Yesterday's Vehicles

Yesterday's automation technology

- Air bags
- Anti-lock braking system
- Electronic stability control
- Cellular connectivity (e.g., emergency crash notification)

Reactive

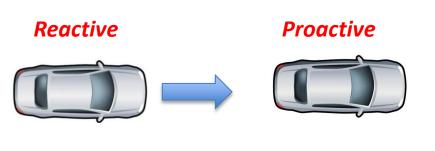

Standard Vehicles

Today's Vehicles

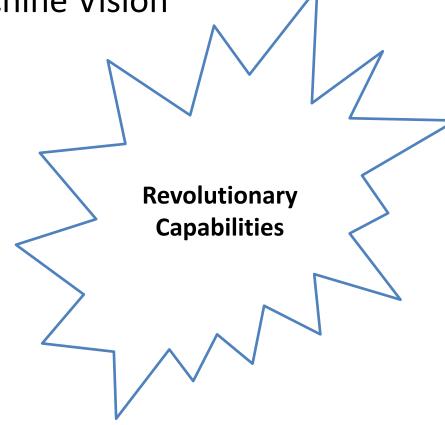
Advanced automation technologies and features:

- Radar, Lidar, Sonar, Machine Vision
- Adaptive cruise control

Standard Vehicles


Automated Vehicles

Today's Vehicles... REALLY!


Advanced automation technologies and features:

- Radar, Lidar, Sonar, Machine Vision
- Adaptive cruise control
- Automatic brake assist
- Lane change assist
- Lane centering

Standard Vehicles

Automated Vehicles

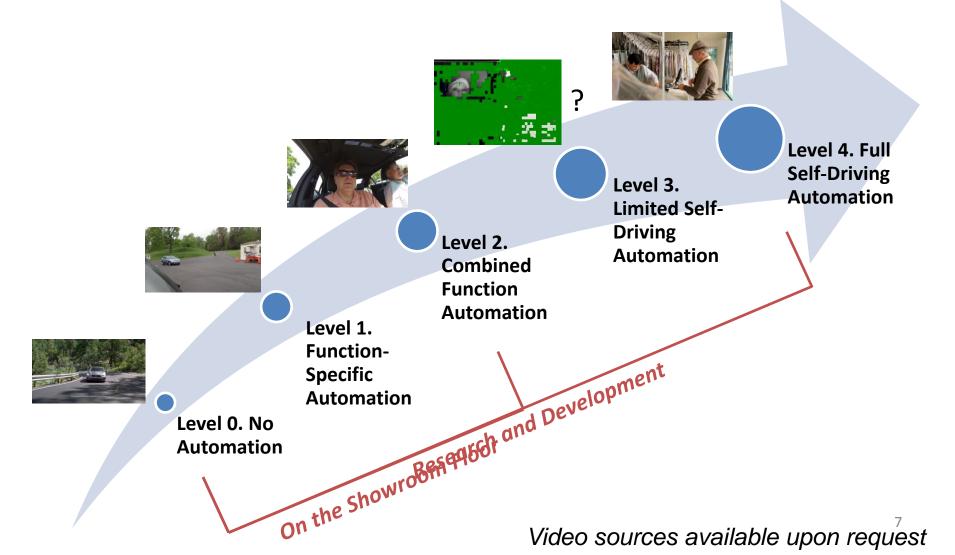
The Pathway Forward

vehicles in 2030."

- "Automobiles with relatively modest "Level 2" features...will be the mainstay, accounting for 92% of autonomous
- "More advanced "Level 3" cars using highresolution special maps...will gain only an 8% share while no fully autonomous "Level 4" car will hit the market [by 2030]."

Jacques, Carole, "Self-driving Cars an \$87 Billion Opportunity in 2030, Though None Reach Full Autonomy," *Lux Research, Inc.* 20 May 2014.

The Pathway Forward


"Obviously it will take time, a long time, but I think it has a lot of potential"

Sergey Brin Google Co-Founder

How Do We Get There?

NHTSA's Five Levels of Vehicle Automation

The Bottom Line

Automated vehicle technologies that can save lives and improve the driving experience are *here today* and rapidly growing.

Automated vehicle technologies are **revolutionary**: constituting or bringing about a major or fundamental change¹

Challenges

Work Zone Location/Status

Sensing in Bad Weather

Signal Phase and Timing

Source: gajitz.com

Incident Location/Status



© Randy Pench/ The Sacramento Bee

Bottleneck Status

System Demand at

© photos.com

Extreme Challenges

Source: City of Dayton, OH

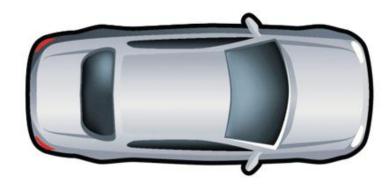
Could Today's Automated Vehicles Have Avoided This Crash?

Advanced automation technologies and features:

- Radar, Lidar, Sonar, Machine Vision
- Adaptive cruise control
- Automatic brake assist

Automated Vehicles

- Lane centering
- Lane change assist


Reactive Proactive

Standard Vehicles

How to make today's proactive automated vehicles...

...even better?

...even better?

Through Wireless Connectivity!!

...and even more better?

Through Wireless Connectivity!!

With Connected, Automated Vehicles!!!

Let's Build on What We Have...

- Current Automated Vehicle State of Practice
 - Cars In the market place
 - Cars On the roads

Reactive Proactive

Add Dedicated Short Range Communications (DSRC)

- Current Automated Vehicle State of Practice
- DSRC Connectivity:
 - US DOT's Connected Vehicle Program (V2V, V2I, I2V, V2X)
 - Demonstrated in Safety Pilot, 2013
 - Collision Avoidance via Warning (V2V)

Connected Predictive

Connected Devices and Infrastructure

Reactive Proactive Connected Proactive

Standard Vehicles Automated Vehicles Connected Vehicles

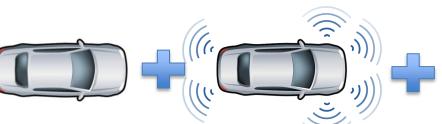
Include All Wireless Communications

- Current Automated Vehicle State of Practice
 - +

- DSRC Connectivity:
 - US DOT's Connected Vehicle Program (V2V, V2I, I2V, V2X)
 - Demonstrated in Safety Pilot, 2013
 - Collision Avoidance via Warning (V2V)

Cellular, Satellite, WiFi, etc.(V2V, V2I, I2V, V2X)

Connected Predictive



Connected Devices and Infrastructure

Connected Proactive

Reactive Proactive

V2V **←→**

Standard Vehicles Automated Vehicles Connected Vehicles

Next Comes Connected Automation

- **Current Automated Vehicle State of Practice**

- **DSRC** Connectivity:
 - US DOT's Connected Vehicle Program (V2V, V2I, I2V, V2X)
 - Demonstrated in Safety Pilot, 2013
 - Collision Avoidance via Warning (V2V)

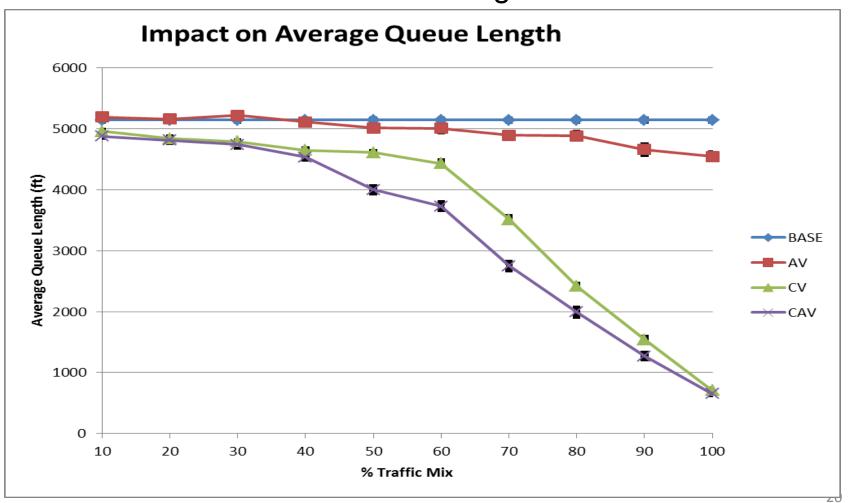
- Cellular, Satellite, WiFi, etc. (V2V, V2I, I2V, V2X)
- **Connected Automation**
 - Cooperative Adaptive Cruise Control

Connected Predictive

Connected Devices and Infrastructure

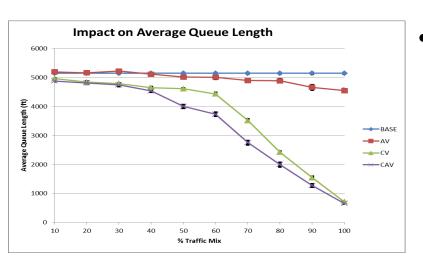
Reactive

Proactive



Advantages of Connected Automation

Impact of Queue Warning and Speed Harmonization on Queue Length



Source: Noblis IR&D

Advantages of <u>Connected</u> Automation

Impact of Queue Warning and Speed Harmonization on Queue Length

- AV technology has little impact on queue length
 - Without communications, AV's still travel at full speed until within sensing range of the queue
- CV technology provides major reductions in queue length
- Small synergies at mid-levels of market penetration

OK, So Now What?...

R&D Opportunities for Connected Automation

DSRC Connectivity:

Pedestrian Safety (V2X/X2V)

Connected Predictive

Connected Proactive

Standard Vehicles

Automated Vehicles

Connected, Automated Vehicles

R&D Opportunities for Connected Automation

DSRC and Cellular Connectivity:

- Pedestrian Safety (V2X/X2V)
- Eco-Driving (I2V)

Connected Predictive

Connected Proactive

Standard Vehicles

Automated Vehicles

Connected, Automated Vehicles

R&D Opportunities for Connected Automation

DSRC and cellular connectivity

- Pedestrian Safety (V2X/X2V)
- Eco-Driving (I2V)
- **Speed Harmonization (I2V)**

Connected Predictive

V2X/X2V

Roadside (mobile apps) Infrastructure

Reactive

Standard Vehicles

Automated Vehicles

Connected, Automated Vehicles

Vision: A Connected, Automated Transportation System

Connectivity-Enabled Information

- Trip Planning and In-Route Information
- Bike Availability
- Access Information for Disabled Drivers
- Rideshare Information
- Bus, Truck, and Train
 Schedule Arrival and
 Departure Information
- Congestion, Incident, and Travel Time Information
- Toll Information
- Parking Availability
- Freight Dock Availability

Vision: A Connected, Automated Transportation System

Connected Vehicle and Traffic Control

- Speed Control/ Harmonization
- Signal Phase and Timing
- Demand
 Management/Tolling
- Fleet and Freight Management

FHWA Office of Operations R&D

Turner-Fairbank Highway Research Center (TFHRC)

McLean, Virginia

Vision of the Saxton Lab

Build Relationships with Universities, Researchers, and Industry

Develop
Technologies
and Evaluate
Concepts

Advance the
State of the Art
through
Transportation
Operations
Research

Promote Professional Development

Build on Federal Institutional Knowledge

Operations R&D Focus Areas

Enabling Technologies

Concepts and Analysis

Operations Applications

Saxton Lab Capabilities

External
Stakeholders,
Applications,
and Data

Saxton Lab Facilities

Connected Laboratory

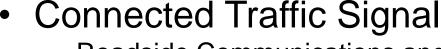
- State-of-the-Art Simulation and Analysis Tools
- High-Bandwidth Internet2
 Connectivity
- High-Capacity Data Servers
- Test and Development Bench

SMART Garage

- Enclosed vehicle laboratory
 - Vehicle exhaust system
 - Wireless connectivity

Saxton Lab Annex

Additional Workstations



Saxton Lab Facilities

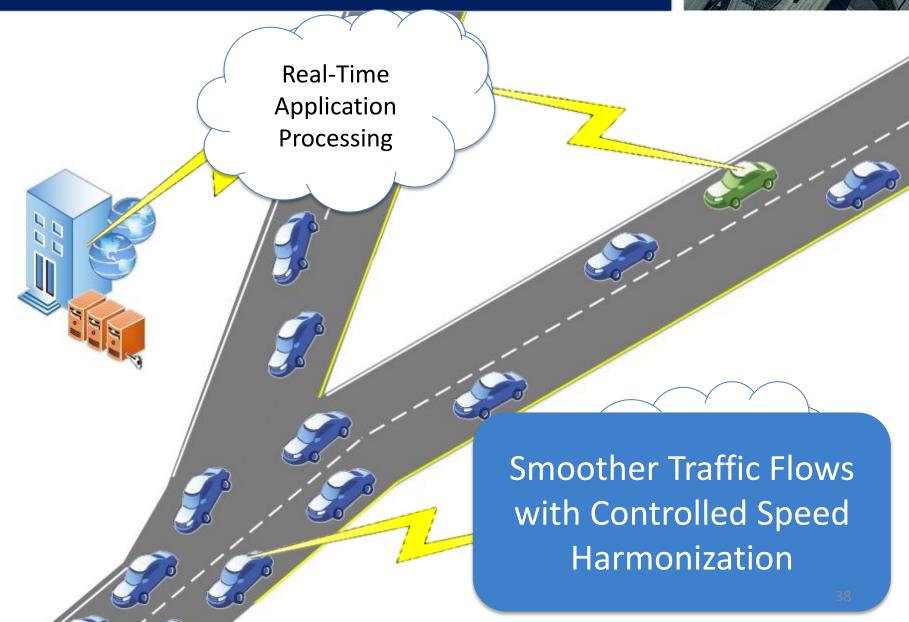
Connected Infrastructure

- Roadside Communications and Traffic Control Infrastructure
- Information Processing

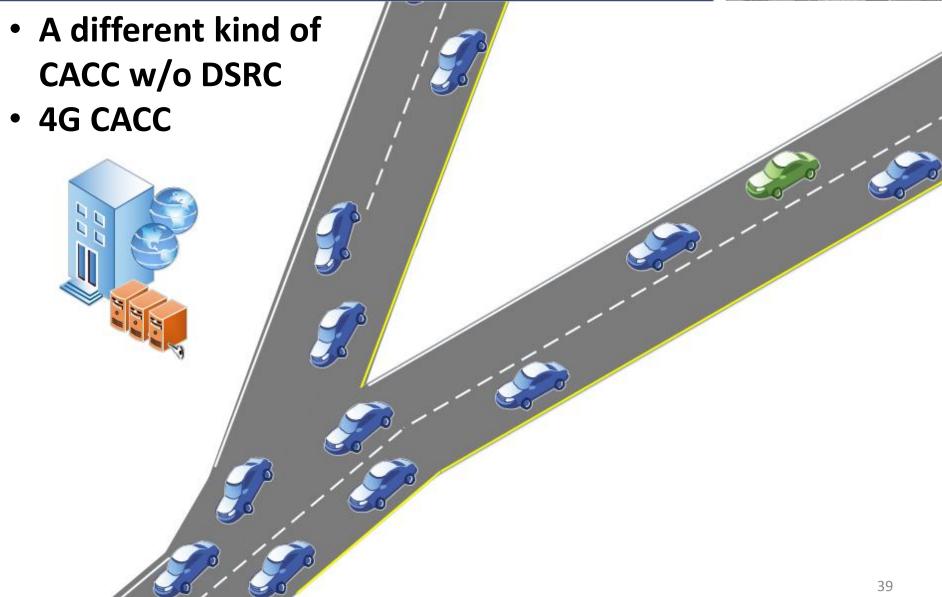
- Wireless Pavement Sensors
- High-Speed Cameras
- Weather &GPS Base Station
- WiMAX, DSRC and Cellular Comm.

- Solar Powered
- Microwave Vehicle Detection
- Outdoor Pan/Tilt/Zoom Dome Cameras

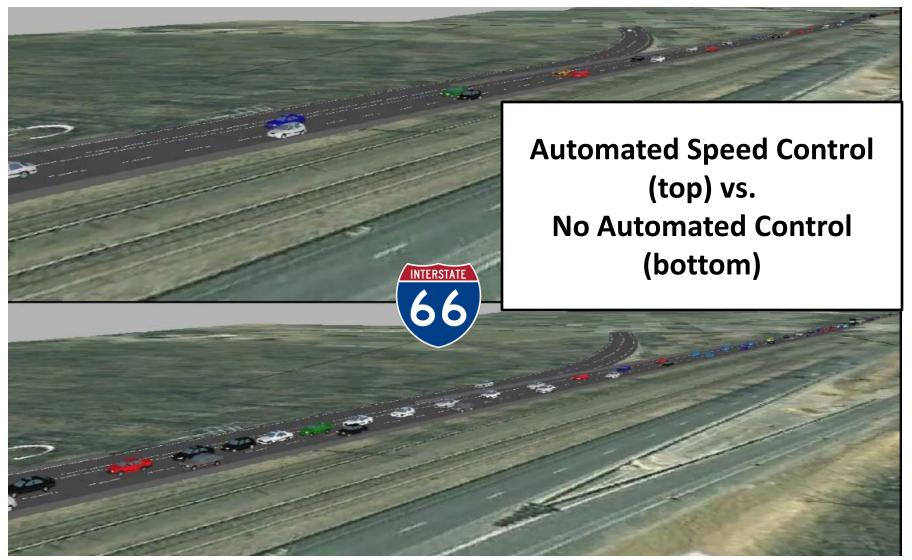
Connected Automation Research for Modeling and Analysis Fleet


- 5 vehicles equipped for V2V and V2I communications testing
 - Radar, Vision, and Ultra-Sonic Sensors
 - Front and rear-facing cameras
 - GPS, DSRC and Cellular Data Connectivity
 - Connected Vehicle Processors
 - On-board CV Data Collection and Processors
- 2 probe vehicles for communications testing
- 1 vehicle for automated eco glide path research
- 1 18-Wheel Tractor Trailer equipped with DSRC connectivity

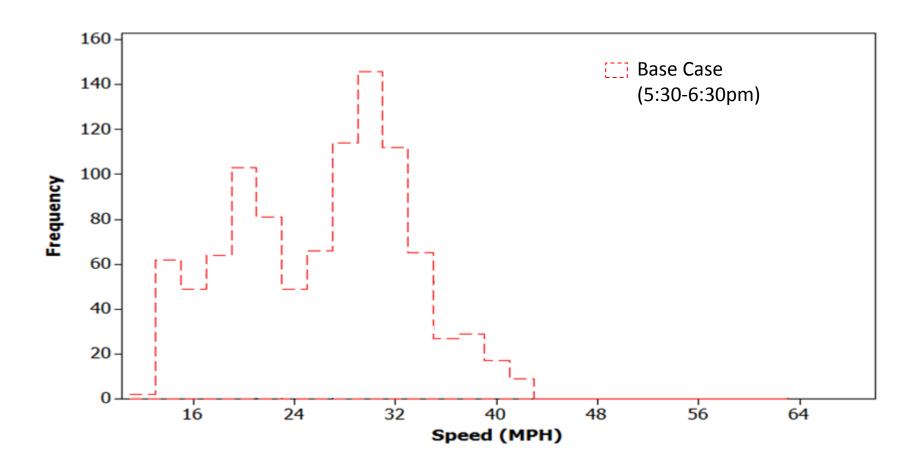
Ongoing Connected Automation Research


- TFHRC is conducting ongoing connected automation research now at the Saxton Lab and across the US
 - Automated Speed Harmonization
 - Automated Glide Paths at Intersections
 - Automated Truck Platooning

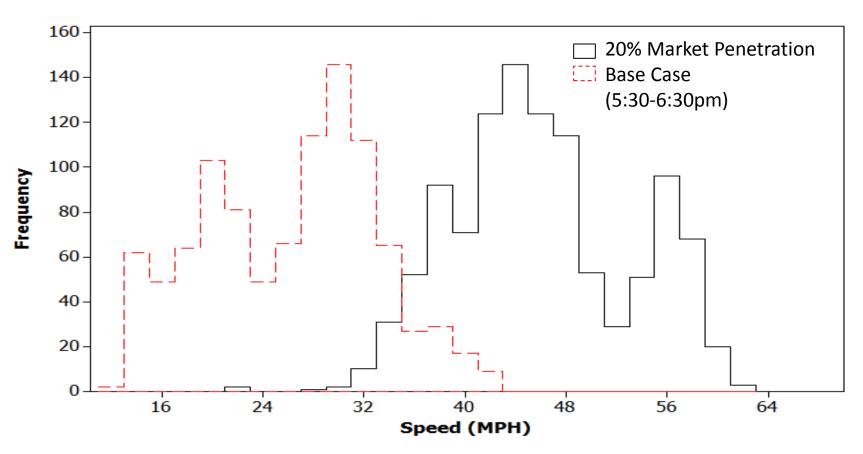
Automated Speed Harmonization Wireless Connectivity


Automated Speed Harmonization Via 4G Wireless Connectivity

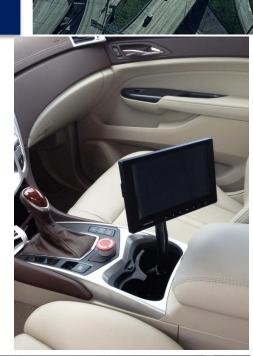
Automated Speed Harmonization Simulation Results


Automated Speed Harmonization Simulation Results

Automated Speed Harmonization: Baseline Condition



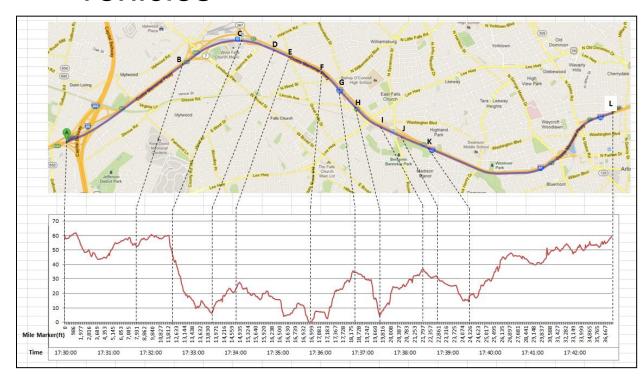
Automated Speed Harmonization: Projected Benefits from Simulation



Higher Speeds during Congested Periods

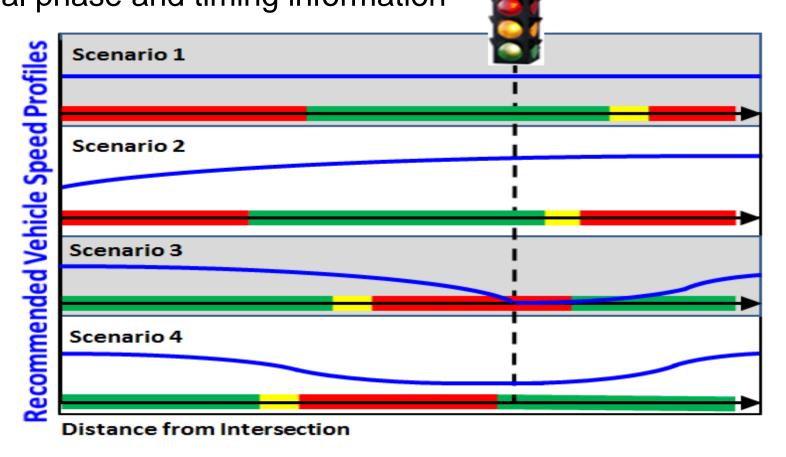
Automated Speed Harmonization Field Testing in NOVA

- TFHRC/Saxton Lab Has Partnered with VDOT to deploy on I-66
- Deploying connected vehicle fleet
- Transmitting real-time speeds directly to cruise controls



Automated Speed Harmonization Field Testing in NOVA

- Developing, Testing and Demonstrating
- Using optimized variable speed targets in coordination with technology deployed in operating vehicles


Benefits:

- Harmonize traffic speeds
- Reduce congestion
- Improve highway performance

Automated Eco Glide Control Saves Fuel

Applications for the Environment: Real-time Information Synthesis (AERIS): Automatically controlling vehicle speeds approaching and departing intersections using real-time traffic signal phase and timing information

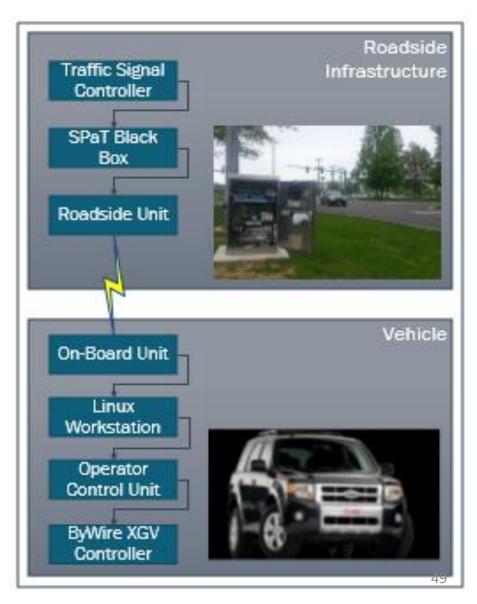


Eco Glide-Path Algorithm Testing at TFHRC

Manual Proof of Concept Test:

Scenario 4: Slightly Reduce Speed to Avoid Red Light

Eco Glide-Path Benefits at TFHRC's Intelligent Intersection


Potential Reduced Fuel Consumption

Speed (mph)	Average Fuel Savings (ml)	SD	Average % Improvement
20	13.0	-	2.5%
25	111	10.9	18.1%
30	76.0	15.7	11.2%
35	73.8	19.6	6.3%
40	107	14.6	9.5%

TFHRC is Automating Eco Glide-Path Vehicle Control via DSRC

- Developing a
 prototype application
 that can control a
 vehicle's speed
 using an automated
 longitudinal vehicle
 control system
- Minimizes driver distraction

Past TFHRC-Sponsored Field Tests of Automated Truck Platooning

Three Automated Trucks with Trailers (6 meter gap, ~0.25 seconds at 55 mph)

Three Automated Trucks with Trailers (4 meter gap, ~0.16 seconds at 55 mph)

Energy savings of 10-20% Double capacity of truck-only lanes

Source: Partners for Advanced Transportation Technology (California PATH)

Ongoing TFHRC-Sponsored Truck Platooning Research

- TFHRC is leading partnerships with academia and the trucking industry
- Two projects addressing key questions:
 - Is platooning performance achievable with truck CACC in mixed traffic?
 - What are driver preferences for CACC time gaps?
 - What are the energy savings at the preferred time gaps?
 - What are the benefits in truck lane capacity, energy, and emissions?

Safe Automated Truck Platooning Possibilities

- Truck platooning may offer significant public and private sector benefits:
 - Mobility: Better travel reliability, speeds, and use of roadway resources
 - Energy and Environment: Lower emissions and fuel consumption
 - Economic Competitiveness: Lower operating costs
 - Safety: Fewer hazardous movements and better response to safety threats

Newest TFHRC-Led Projects

- High Performance Vehicle Streams
- Lane Change/Merge Options
- Human Factors Issues Related to Advanced Vehicle Control Functions
- Hardware in the Loop Simulation
- Real-Time Data for Connected Vehicles

High Performance Vehicle Streams

Research question: Can high performance vehicle streams of CACC-enabled vehicles provide order-of-magnitude performance benefits throughout a managed lane and without significant adverse impacts on other roadway elements?

Objectives: Develop concepts and assess through simulation the following:

- Strategies to cluster CACC-enabled vehicles with their peers to gain maximum traffic flow benefits
- Use of the opportunities posed by managed lanes
- Mix cars, buses, and trucks into streams using CACC

Lane Change/Merge Options

Research Question: Can traffic movements such as lane changes, weaves, merges, and de-merges be addressed with new operational concepts and technologies, including automated lateral control, and so enable the potential gains in throughput and performance that CACC promises?

Objective: Conduct foundational research on the traffic operations of lane changes, weaves, merges, and de-merges, based upon enabling technologies for automated operation and V2V and V2I communication.

Human-Machine Interaction

Research Question: Will evolving automation through CACC be acceptable to drivers and used as expected?

Objective: Investigate, through the use of a driving simulator and limited field testing, key human factors areas relating to CACC use, including:

- Workload, situational awareness, and distraction, and
- Platoon entry/exit operations

Hardware in the Loop **Simulation**

Research question: How do we assess the benefit and the performance of Connected Vehicles in a traffic network, given that the existing simulation software were not designed with Connected Vehicle features?

Objective: To develop a new tool to better evaluate the benefit and the performance of Connected Vehicles. Includes three major parts:

- Traffic simulation software
- Communication simulation software
- Hardware interface

Many new items, besides the conventional simulation items, will be added to this tool, which include OBE, RSE, SPaT, DSRC, GPS, Mapping, and engine emission, etc. 57

Real-Time Data from Roadway Sensors for Connected Vehicles

Research question: Can infrastructure systems recognize individual vehicle passages (and their *speed*) and broadcast data frequently (up to 10 times per second) in synchronization with GPS and vehicle systems, and also provide data to traffic management systems?

Objective: Develop and test a next generation traffic sensor, processing, and communication system

The Pathway Forward

Automated vehicle technologies are revolutionary

The Pathway Forward

Automated vehicle technologies are revolutionary

A connected, automated transportation system is the <u>next revolution</u>

We Want You: Be a Part of the Next Revolution!

Universities

Exploratory Advanced Research (EAR) Program

National Science Foundation

Researchers

- National Research Council (NRC) Fellowships
- Eisenhower Research Fellows
- FHWA Student Internships
- Intergovernmental Personnel Act Agreements (IPA)

Industry

- Connected Vehicle PlugFests
- OEMs (Crash Avoidance Metrics Partners, LLC)

Government

State and local DOTs

Opportunities for West Virginia

- FHWA 2015 Guidance for Connected Vehicles and Formation of a V2I Deployment Coalition
 - Open comment period until November 14, 2014:
 http://www.its.dot.gov/meetings/v2i_feedback.htm
- USDOT Connected Vehicle Pilots Deployment Project: http://www.its.dot.gov/pilots/
- AASHTO Connected Vehicle Field Infrastructure Footprint Analysis:
 - http://stsmo.transportation.org/Documents/Executive%20Briefing.pdf

To Learn More

Visit

- FHWA Office of Operations Website: <u>http://ops.fhwa.dot.gov/</u>
- Turner-Fairbank Highway Research Center Website:
 - http://www.fhwa.dot.gov/research/tfhrc/offices/operations/
- FHWA R&T Agenda: http://www.fhwa.dot.gov/research/fhwaresearch/agenda/challengeAreas.cfm?cid=2

Contact

– Joe.Peters@dot.gov

