Standards Committee
Meeting Agenda
Wednesday, July 6, 2022, at 9:00am
Meeting Location: 1334 Smith Street, Charleston, WV in Lower-Level Conference
Also meeting virtually via Google Meet. E-mail distribution includes instruction.

Call to Order

Roll Call of Attendees

Approval of Minutes of 5-4-2022 Meeting

Unfinished Business – Standards discussed at last Committee meeting

<table>
<thead>
<tr>
<th>TITLE</th>
<th>Champion</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd time to Committee. Discussed in March and May. Six proposed drawings and revisions to WVDOH Standard Details Book – Volume 3. These drawings are for bearings and would be new 1800 section. The following sheets are included: a) Sheet # 1800B1 - Plain Elastomeric Bearing Details b) Sheet # 1800B2 - Laminated Elastomeric Bearing Details c) Sheet # 1800BR1 – Steel Beam Non-Guided Bearing Restraints d) Sheet # 1800BR2 – Steel Beam Guided Bearing Restraints e) Sheet # 1800BR3 – Steel Beam Fixed Bearing Restraints f) Sheet # 1800BR4 – Concrete Beam Non-Guided Bearing Restraints</td>
<td>B. Neeley</td>
</tr>
<tr>
<td>No update to the Standard Details. Approval is expected in July</td>
<td></td>
</tr>
<tr>
<td>2nd time to Committee. Discussed in May. Design Directive (DD)-644 Asphalt Pavement.</td>
<td>V. Allision</td>
</tr>
<tr>
<td>The DD is redline copy, showing the propose changes to past working copy. It removes some of the proposed Marshall Mix Design requirements and clarifies selection criteria.</td>
<td></td>
</tr>
<tr>
<td>No update to the DD. Approval is expected in July</td>
<td></td>
</tr>
<tr>
<td>New Business</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Next Meeting Date: Wednesday, September 7, 2022.
Deadline for submissions: August 8, 2022.

Adjournment
Standards Committee
Meeting Minutes
May 4, 2022

Call to Order: The meeting was called to order by Acting Chair Steve Boggs shortly after 9:00 AM.

Attendees: See Attendee List for a list of attendees.

Minutes: Minutes of the 3-4-2022 Meeting were approved without objection.

Unfinished Business: Items which were discussed at prior meeting are listed below:

I. Various Design Directive (DD) updates based upon AASHTO Green Book 7th edition’s moving towards performance based practical design and the definitions of project categories were briefly explained, no discussion.

 Four new DD’s:
 1. DD-600 Geometric Design Project Categories.
 2. DD-601 New Construction Project Category.
 3. DD-602 Reconstruction Project Category.
 4. DD-603 Construction Projects on Existing Roads.

Updates to following existing DD’s:
1. Existing DD-601 Geometric Design Criteria for Rural Highways. The DD will be removed
2. Existing DD-602 Interchange Ramps Width. The DD will be removed.
3. Existing DD-603 Spiral and Superelevation. The DD will be removed.
4. Existing DD-604 Non-Freeway NHS RRR Policy. The DD will be removed.
5. Existing DD-605 Controlling Criteria and Design Exception Policy. Updated DD.
6. Existing DD-606 Non-NHS Policy. The DD will be removed.
7. Existing DD-608 Median and outside slopes, Overlay projects. The DD will be removed.
8. Existing DD-609 Interstate RRR Standards and Guidance. The DD will be removed.
9. Existing DD-610 Geometric Design Criteria for Urban Highways. The DD will be removed.
10. Existing DD-624 Ramp Terminals. Updated DD.
11. Existing DD-817 Minor Preventive Maintenance. The DD will be removed.

All fifteen Design Directive changes were approved at the meeting. Vote 4-0.
II. **Structure Directives.** The existing Bridge Design Manual has been updated and revised title to Structure Directives. There was a brief explanation, no discussion. The Structure Directives were approved at the meeting. Vote 4-0.

III. Six proposed drawings and revisions to WVDOH Standard Details Book – Volume 3. These drawings are for bearings and would be new 1800 section. Barrett Neeley introduced and discussed these during the meeting.

1. Sheet # 1800B1 - Plain Elastomeric Bearing Details
2. Sheet # 1800B2 - Laminated Elastomeric Bearing Details
3. Sheet # 1800BR1 – Steel Beam Non-Guided Bearing Restraints
4. Sheet # 1800BR2 – Steel Beam Guided Bearing Restraints
5. Sheet # 1800BR3 – Steel Beam Fixed Bearing Restraints
6. Sheet # 1800BR4 – Concrete Beam Non-Guided Bearing Restraints

Hope to approve at the next meeting.

New Business: Items discussed for the first time at committee meeting are listed below:

IV. **DD-644 Asphalt Pavements.** The revision updates asphalt pavement mix design requirements and selection criteria. Vince Allision introduced and explained proposed DD during the meeting.

Next Meeting: The next meeting is on Wednesday July 6, 2022. Deadline for submissions June 10, 2022.

Adjournment: The meeting was adjourned.
Call to Order: The meeting was called to order by Acting Chair Steve Boggs shortly after conclusion of Standards Committee meeting.

Attendees: See Attendee List for a list of attendees.

Unfinished Business: Items which were discussed at prior meeting are listed below:

Two comments were submitted on the manual:

a. John Crane, WVAPA. Question on reference to Turnpike in subsection 103.4.1 Insurance Requirements
b. Roadsafe Traffic. Question on proprietary name & MASH language in subsection 664.1.2-Material Considerations

(Discussion Ensued)

The 2022 Construction Manual was approved at the meeting, as noted. Vote 4-0.

Next Meeting: The next meeting is on Wednesday July 6, 2022. Deadline for submissions June 10, 2022.

Adjournment: The meeting was adjourned.
May Standards Committee and Manuals Committee Meeting

Wednesday, May 4, 2022

Attendee List

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Organization/McE Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ahmed, Monji</td>
<td>HDR, Inc.</td>
</tr>
<tr>
<td>2.</td>
<td>Allison, Vincent.</td>
<td>WVDOH – MCS&T Division</td>
</tr>
<tr>
<td>3.</td>
<td>Anders, Tony</td>
<td>Triton</td>
</tr>
<tr>
<td>4.</td>
<td>Bodnar, David</td>
<td>WVDOH – Engineering Division</td>
</tr>
<tr>
<td>5.</td>
<td>Boggs, Steve</td>
<td>WVDOH – Technical Support Division</td>
</tr>
<tr>
<td>6.</td>
<td>Brayack, Daniel *</td>
<td>WVDOH – MCS&T Division</td>
</tr>
<tr>
<td>7.</td>
<td>Brennan, Patrick</td>
<td>WVDOH – Performance Management</td>
</tr>
<tr>
<td>8.</td>
<td>Brown, Phillip</td>
<td>WVDOH – MCS&T Division</td>
</tr>
<tr>
<td>9.</td>
<td>Conley-Rinehart, Laura</td>
<td>WVDOH – Technical Support Division</td>
</tr>
<tr>
<td>10.</td>
<td>Crane, John</td>
<td>WV Asphalt Pavement Association</td>
</tr>
<tr>
<td>11.</td>
<td>Danberry, Sasha</td>
<td>WVDOH – Contract Administration Division</td>
</tr>
<tr>
<td>12.</td>
<td>Elkins, Jerry</td>
<td>HNTB</td>
</tr>
<tr>
<td>13.</td>
<td>Farley, Paul</td>
<td>WVDOH – MCS&T Division</td>
</tr>
<tr>
<td>14.</td>
<td>Foster, Jason</td>
<td>WVDOH – Deputy State Highway Engineer - Development</td>
</tr>
<tr>
<td>15.</td>
<td>Hevener, Wes</td>
<td>AMT Engineering</td>
</tr>
<tr>
<td>16.</td>
<td>Hoover, Kimberly</td>
<td>WVDOH – Operations Division</td>
</tr>
<tr>
<td>17.</td>
<td>Johnson, Ross</td>
<td>Mountain State Insurance</td>
</tr>
<tr>
<td>18.</td>
<td>McGlumphy, Kevin</td>
<td>Associated Asphalt</td>
</tr>
<tr>
<td>19.</td>
<td>Neeley, Joseph B</td>
<td>WVDOH – District One</td>
</tr>
<tr>
<td>20.</td>
<td>Scites, RJ *</td>
<td>WVDOH – Engineering</td>
</tr>
<tr>
<td>21.</td>
<td>Smith, Shawn *</td>
<td>WVDOH – Contract Administration Division</td>
</tr>
<tr>
<td>22.</td>
<td>Smith, Yuvonne</td>
<td>FHWA</td>
</tr>
<tr>
<td>23.</td>
<td>Thaxton, Andrew</td>
<td>WVDOH – MCS&T</td>
</tr>
<tr>
<td>24.</td>
<td>Varney, Billy</td>
<td>TRC Companies</td>
</tr>
<tr>
<td>25.</td>
<td>Whitmore, Ted *</td>
<td>WVDOH – Traffic Engineering Division</td>
</tr>
<tr>
<td>26.</td>
<td>Zyzka, Mara</td>
<td>WVDOH – Technical Support Division</td>
</tr>
</tbody>
</table>

* Voting Delegate

TOTAL ATTENDEES: 26
NOTES:
1. BRIDGE SEATS ON WHICH BEARING PADS WILL BE MOUNTED SHALL
 BE FIXED TO A TRUE LEVEL PLANE AT THE END OF THE
 ELEVATION. FULL CONTACT IS SUBJECT TO THE APPROVAL OF THE
 ENGINEER.
2. RELEASING THE BEARING PAD IS IN CONTACT WITH METAL IS
 DISCOURAGED.
3. PLAIN ELASTOMERIC BEARING SHALL BE DUROMETER 50 OR 60
 CORRESPONDING TO A SHEAR MODULUS OF 103 OR 165 PSI
 RESPECTIVELY.
4. DUROMETER 50 BEARINGS ARE RECOMMENDED FOR BRIDGES WITH
 MODERATE CONDITIONAL SLOPE, SKEW OR CURVATURE.
5. PLAN BEARINGS SHALL ONLY BE USED FOR TEMPORARY SUPPORT
 UNTIL INTEGRAL STRUCTURES ARE FINISHED TO A TRULY LEVEL
 PLANE AT THE EXACT REQUIRED ELEVATION. IF FULL CONTACT IS
 NOT ACHIEVED, FIELD ADJUSTMENTS OR MODIFICATIONS SHALL BE
 MADE BY THE CONTRACTOR TO ENSURE FULL CONTACT SUBJECT TO
 THE APPROVAL OF THE ENGINEER.
6. PRIOR TO SHIPMENT, BEARINGS SHALL BE WRAPPED WITH A
 WATERPROOFING COVERING. THE BEARINGS SHALL NOT BE UNWRAPPED
 UNTIL BEARINGS ARE READY TO SET INTO THEIR FINAL POSITION.
7. THE CONTRACTOR SHALL FINISH ALL CLOSURE POURS AT
 INTEGRAL SUBSTRUCTURE UNITS PRIOR TO WINTER SHUTDOWN AFTER
 EXTREME LOW OR HIGH TEMPERATURE EVENTS. REPLACE DAMAGED
 BEARINGS AT THE DISCRETION OF THE ENGINEER. THE CONTRACTOR IS RESPONSIBLE FOR
 REPLACING BEAMS AND BEARING REPLACEMENT IF NEEDED.
8. THE CONTRACTOR SHALL VERIFY THE POSITIONING OF BEAMS AND
 BEARINGS TO AVOID ENCASING WATER SPILLS. THE BEARINGS SHALL NOT BE UNWRAPPED
 UNTIL BEARINGS ARE READY TO SET INTO THEIR FINAL POSITION.
9. THE CONTRACTOR SHALL TAKE PRECAUTIONS TO AVOID
 ENCASING WATER SPILLS OF GREASE, DIRT AND OTHER FOREIGN
 MATERIAL ON BEARINGS DURING INSTALLATION. A DEGREASING
 AGENT APPROVED BY THE ENGINEER SHALL BE REQUIRED FOR ALL
 SPILLS. AN APPROVED METHOD BEFORE FINAL INSTALLATION. A DEGREASING
 AGENT APPROVED BY THE ENGINEER SHALL BE REQUIRED FOR ALL
 SPILLS.
10. A PREFORMED JOINT (PFJ) SHALL BE USED IN FRONT OF THE
 TEMPORARY BEARINGS AS NEEDED TO FILL ALL VOIDS. THE
 CONTRACTOR SHALL TAKE PRECAUTIONS TO AVOID ENCASING WATER
 WITHIN THE ABUTMENT.

TYPICAL SECTION

BEARING PLAN

BEARING LAYOUT

PLAIN BEARING PAD CONTROL DIMENSIONS

<table>
<thead>
<tr>
<th>CODE</th>
<th>DESCRIPTION</th>
<th>EQUATION</th>
<th>ABUT 1</th>
<th>ABUT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>PAD LENGTH (IN)</td>
<td>W x L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>THICKNESS (IN)</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>PAD PLAN PERIMETER (IN)</td>
<td>2P + 2T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>SHAPE FACTOR</td>
<td>S = P x T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DUROMETER 50 ALLOWABLE COMRESSIVE STRESS (PSI)

DUROMETER 50 ALLOWABLE COMRESSIVE STRESS (PSI)

C { BRG TO { BRG

INT ABUT

B E A R I N G E L E V A T I O N S C H E M A T I C

BRIDGE PLAN NUMBERS

DEPARTMENT OF TRANSPORTATION
DIVISION OF HIGHWAYS

NOT TO SCALE

STANDARD BRIDGE PLANS

PLAIN ELASTOMERIC BEARING DETAILS

SHEET NUMBER

WEST VIRGINIA DEPARTMENT OF TRANSPORTATION
DIVISION OF HIGHWAYS

5-FEB-2022 13:59

PRINT DATE

5-FEB-2022 13:59

DATE

5-FEB-2022 13:59
Laminated Bearing Pad Control Dimensions

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pier 1</th>
<th>Pier 2</th>
<th>Pier 3</th>
<th>Pier 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. All laminated bearing pad shall be of 60 Durometer (hardness) elastomeric steel laminate shall conform to ASTM A350, Grade 36 or better.
2. Laminated bearings shall be subject to testing requirements in accordance with AASHTO LRFD construction specifications.
3. PRIOR TO SHIPMENT, LAMINATED BEARING ASSEMBLIES SHALL BE FULLY ASSEMBLED, BLOCKED AND SECURED INTO POSITION, WELDED AND WRAPPED WITH A WATERPROOFING COVERING. THE BEARING ASSEMBLY SHALL NOT BE UNWRAPPED UNTIL THE FIELD INSTALLER IS READY TO SET THE FINAL POSITION.
4. Bridge seats on non-bearing pads shall be finished to a true level plane at the exact required elevation at full extent is not removed after the deck & replace field adjustments or modifications shall be made by the contractor to ensure full contact shall be the approval of the engineer.
5. Every joint coating shall be applied to all steel surfaces contacting the bearing pad and extended by an all bridge width beyond the pad limits. The joints shall be installed in accordance with the epoxy manufacturer's instructions. Allow the epoxy to fully cure for the minimum time recommended by the manufacturer then remove any loose grit before bearing installation. Every joint shall meet the requirements of SSPC Abrasive Specifications #1 - Medium & slag abrasives, Type 2 or better.
6. Welding while the laminated bearing pad is in contact with the joint and epoxy shall be repaired. Temperature rise of 220°F or other detrimental mean shall be used to ensure the pad will not be damaged to temperatures greater than 220°F. Any damage to the pad due to welding will be cause for rejection.
7. All bearings shall be marked prior to shipping. The marks shall include the bearing location and a direction arrow that states station. All markings shall be permanent and shall be usable after the bearing is installed.
8. All design parameters required within the laminated bearing pad control dimensions table shall be unfastrched (service limit state) and include impact.
9. A static coefficient of friction of 0.20 shall be used in the design. All laminated bearings are not subject to slip over service and the third limit state. Additional consideration may be warranted for steel grades.

Typical Section - Type A1
- 3/4" Gauge Steel Shims
- See Detail A

Typical Section - Type A2
- 3/4" Gauge Steel Shims
- See Detail A

Typical Section - Type A3
- 5/8" Gauge Steel Shims
- See Detail A

Typical Section - Type B1
- 4/8" Gauge Steel Shims
- See Detail B

Typical Section - Type B2
- 4/8" Gauge Steel Shims
- See Detail B

Typical Section - Type C1
- 5/8" Gauge Steel Shims
- See Detail A

Typical Section - Type C2
- 5/8" Gauge Steel Shims
- See Detail B

Bearing Plan

- ABUT 1
- ABUT 2

Bearing Details
- West Virginia Department of Transportation
- Division of Highways

Standard Bridge Plans

- Laminated Elastomeric Bearing Details
- Sheet Number: 800432

Review
- Date: 5-FEB-2022 14:02

Drawing
- Design: Date
- Drawn: Date

Revisions
- No. Revisions Date

Print Date
- Date: 5-FEB-2022 14:02
NOT TO SCALE

NON-GUIDED SIDE ELEVATION
(SLOPES < 0.50% ALONG BEAM)

SECTION A-A

BEARING RESTRAINTS CONTROL DIMENSIONS

<table>
<thead>
<tr>
<th>CODE</th>
<th>DESCRIPTION</th>
<th>ABUT 1</th>
<th>PER 1</th>
<th>PER 2</th>
<th>ABUT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PLATE THICKNESS (IN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>PLATE WIDTH (IN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>PLATE LENGTH (IN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>PLATE METHING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>WELD LENGTH (IN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. UNLESS OTHERWISE NOTED, SOLE PLATES SHALL BE MADE OF THE SAME STEEL AS THE BEARING BOTTOM FLANGE. WHERE DIFFERING MATERIALS ARE SPECIFIED, WELDABILITY OF THE MATERIALS SHALL BE VERIFIED IN ACCORDANCE WITH AWS D1.5 - BRIDGE WELDING CODE.

2. SOLE PLATES SHALL HAVE A MINIMUM THICKNESS OF ¾" AND MINIMUM LENGTH APPROPRIATE OF 0.5x BEAM.

3. EXISTING GROUT COATING SHALL BE APPLIED TO ALL STEEL SURFACES CONTACTING THE BEARING PAD AND EXTEND TO ALL DIAMETERS BEYOND THE PAD LIMITS. THE EXISTING GROUT SHALL BE REMOVED IN ACCORDANCE WITH THE EXISTING MANUFACTURER'S INSTRUCTIONS. ALLOW THE GROUT TO FULLY CURDLE FOR THE PERIOD RECOMMENDED BY THE MANUFACTURER. REMOVE ANY EXCESS GROUT BEFORE THE PLACING OF THE BEARING. THE PLACING OF THE EXISTING GROUT SHALL MEET THE REQUIREMENTS OF THE EXISTING MANUFACTURER'S SPECIFICATIONS. W - METAL SALES ABRASIVES, TYPE 2 OR BETTER.

4. FIELD WELDING OF SOLE PLATES IS PREFERRED. WHERE FIELD WELDING IS NECESSARY, ALL GROUTING SLOTS SHALL BE COVERED WITH A SHEET OF METAL PAPER AND ATTACHED WITH A STRONG, WATERPROOF SEALANT. ALL WELDING SHALL BE PERFORMED IN ACCORDANCE WITH AWS D1.5 - BRIDGE WELDING CODE.

5. SPLITTING WHILE THE LAMINATED BEARING PAD IS IN CONTACT WITH THE TOP FLANGE OF THE BEAM TO AVOID SURFACE EXCESSIVE WELDING. THE WELD AND DAMAGED AREA OF PAINTED SURFACE SHALL BE CLEANED AND REPAIRED AS SPECIFIED BY THE ENGINEER.

6. THE ENGINEER SHALL VERIFY WELDS ARE CAPABLE OF WITHSTANDING ALL SUBJECT FORCE EFFECTS.

7. THE DETAILS AND NOTES HEREIN ARE NOT APPLICABLE FOR VULCANIZED BEARINGS. REFER TO AASHTO-NSBA STEEL BRIDGE COLLABORATION GUIDELINES FOR MORE INFORMATION.
GUIDED BEARING RESTRAINTS

1. Unless otherwise noted, sole plates shall be made of the same steel as the bearing bottom flange and of sufficient materials to avoid differential movement of the materials. Where differential movement of the materials is likely, a bearing shall be verified in accordance with AASHTO M115 - Bridge Welding Code.

2. Sole plates shall have a minimum thickness of 1/2" and minimum width of 1/2".

3. Every grip coating shall be applied to all steel surfaces contacting the bearing plate and extend 1/2" in all directions beyond the part limits. The grip coating shall be applied in accordance with every manufacturer's instructions. Allow the grip to fully cure for the minimum recommended time before installation. The grip coating shall meet the requirements of Figure 14. Bonding specifications.

4. Anchor rod holes shall be equipped with friction embedments. Where embedments are not provided, friction embedments shall be used.

5. Welding near the laminated bearing pad shall be avoided. If welding is necessary, all embedments shall be removed before the weld. The embedments shall be cleaned and repaired as specified by the engineer.

6. The engineer shall verify welds are capable of withstanding all subject force effects.

7. The details and notes herein are not applicable for guided bearings. Refer to AASHTO Guide for Executing and Inspecting Steel Bridge Construction for more information.

8. Unless otherwise noted, sole plates shall be made of the same steel as the bearing bottom flange and of sufficient materials to avoid differential movement of the materials. Where differential movement of the materials is likely, a bearing shall be verified in accordance with AASHTO M115 - Bridge Welding Code.

9. Sole plates shall be welded to the sole plate all around the edge shall be welded to the sole plate all around the edge. The weld shall be verified in accordance with AASHTO M115 - Bridge Welding Code.

10. Anchor rod holes shall be equipped with friction embedments. Where embedments are not provided, friction embedments shall be used.

11. The length of the slotted hole shall be no less than the length of the bearing pad. Where embedments are not provided, friction embedments shall be used.

12. Anchor rod holes shall be welded to the sole plate all around the edge. The weld shall be verified in accordance with AASHTO M115 - Bridge Welding Code.

13. The engineer shall verify welds are capable of withstanding all subject force effects.
1. Unless otherwise noted, sole plates shall be made of the same steel as the bottom flange, and the bottom flange material shall be verified in accordance with AASHTO M104, Bridge Welding Code.

2. Sole plates shall have a minimum thickness of 0.75" and minimum weldability of 0.60.

3. Exposed grit coating shall be applied to all steel surfaces contacting the bearing pads, extending at all welds, and extending 3 ft beyond the pad limits. The exposed grit shall be verified in accordance with AASHTO M104. In areas of bonded surfaces, allow the epoxy to fully cure before surfacing the bond.

4. Shear plates shall be welded to the sole plate all around. The engineer shall verify welds are capable of remaining all subject force effects.

5. WELDING WHILE THE LAMINATED BEARING PAD IS IN CONTACT WITH METAL IS NOT ALLOWED. If required, temperature indicating wax or other suitable means shall be used to ensure the pad is not exposed to temperatures greater than 250°F. Any damage to the pad due to welding will be cause for rejection.

6. The anchor rods shall be silvered and cleaned as specified by the engineer. The weld and damaged area of painted surface shall be cleaned and repaired as specified by the engineer.

7. The laminated bearing pad shall be removed. The engineer shall verify welds are capable of withstanding all subject force effects.

8. The details and notes herein are not applicable for fixed side elevation. See notes:

9. The bearing restraints shall be designed for maximum factored longitudinal and lateral loads concurrently unless otherwise noted.

10. The anchor rod shall be fabricated for maximum factored longitudinal and lateral loads concurrently.

11. The bearing restraints shall be designed for maximum factored longitudinal and lateral loads concurrently.
Non-Guided Bearing Restraints

1. **Special Attention** should be given to drainage when designing bearing seats. Drainage should extend beyond the edge of the substructure. All Rickers should be made in accordance with the Engineer's specifications.

2. **Unless otherwise noted,** bearing plate and sole plates shall conform to AASHTO M270 Grade 50. After fabrication and before galvanizing, the plates shall be heated to 700°F and cooled in accordance with the manufacturer's recommendations. The plates shall be hot-dip galvanized in accordance with AASHTO M111.

3. **Beveled sole plates** shall have a minimum bevel of 0.01 radians.

4. **Tap plates** after galvanization for installation of ½" diameter ASTM F3125, Grade A325S countersunk bolts. Drill holes in accordance with the manufacturer's recommendations before drilling countersunk holes. The holes shall be drilled in accordance with the manufacturer's recommendations.

5. **The position of shear studs may be modified as needed** with the Engineer's approval.

6. **All plates** shall be thoroughly cleaned of all foreign material prior to installation in accordance with standard specifications. Tighten countersunk bolts snug tight.

7. **Epoxy grit coating** shall be applied to all steel surfaces contacting the bearing pad and extend to the edges of the steel plates. The epoxy grit shall be installed in accordance with the epoxy manufacturer's recommendations. Allow the epoxy to fully cure for the manufacturer's recommended period before proceeding. Tighten the plates to the manufacturer's specifications.

Notes:

- Special attention should be given to drainage when designing bearing seats. Drainage should extend beyond the edge of the substructure. All Rickers should be made in accordance with the Engineer's specifications.

- Unless otherwise noted, bearing plate and sole plates shall conform to AASHTO M270 Grade 50. After fabrication and before galvanizing, the plates shall be heated to 700°F and cooled in accordance with the manufacturer's recommendations. The plates shall be hot-dip galvanized in accordance with AASHTO M111.

- Beveled sole plates shall have a minimum bevel of 0.01 radians.

- Tap plates after galvanization for installation of ½" diameter ASTM F3125, Grade A325S countersunk bolts. Drill holes in accordance with the manufacturer's recommendations before drilling countersunk holes. The holes shall be drilled in accordance with the manufacturer's recommendations.

- The position of shear studs may be modified as needed with the Engineer's approval.

- All plates shall be thoroughly cleaned of all foreign material prior to installation in accordance with standard specifications. Tighten countersunk bolts snug tight.

- Epoxy grit coating shall be applied to all steel surfaces contacting the bearing pad and extend to the edges of the steel plates. The epoxy grit shall be installed in accordance with the epoxy manufacturer's recommendations. Allow the epoxy to fully cure for the manufacturer's recommended period before proceeding. Tighten the plates to the manufacturer's specifications.

Table: Bearing Restraints Control Dimensions

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Abut 1</th>
<th>Pier 1</th>
<th>Pier 2</th>
<th>Abut 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Plate Thickness (in)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Plate Thickness (in)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Screw Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Screw Length (in)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Embedded Plate Length (in)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>End to End of Studs (in)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>End to End of Studs (in)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Embedded Plate Length (in)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram Notes:

- **Non-Guided Side Elevation**
 - SLOPES < 0.50% along beam
 - SLOPES > 0.50% and < 2.00% along beam
 - SLOPES > 2.00% along beam

- **Section A-A**
 - Diagram showing details of shear studs, plate thickness, and embedded plate length.

- **Section B-B**
 - Diagram showing details of plate thickness and screw type.
This Design Directive (DD) provides guidance on selecting asphalt pavement mix design methods and types of asphalt pavement. It also provides descriptions of situations that require polymer-modified asphalts, and methods for calculating quantities and types of materials that are to be used.

TYPES OF ASPHALT MIX DESIGNS

MARSHALL ASPHALT MIX DESIGN - Bruce Marshall developed the “Marshall” method of asphalt mix design in the late 1930’s for the Mississippi Highway Department. This method has been used by the WVDOT in the past and was the standard mix design method for many years since the 1970’s. Only use asphalt mixtures utilizing the Marshall mix design methodology in the following applications:

Purchase Orders (POs), both pickup and laydown, and Non-NHS county routes with less than 3000 ADT.

Note that while Marshall mixtures are exclusive to these applications, Superpave may also be used if the designer chooses to do so. Superpave shall be used in all other scenarios. Projects shall use only one mix design methodology.

SUPERPAVE ASPHALT MIX DESIGN - “Superpave” stands for Superior Performing Asphalt Pavements. It represents an improved system for specifying the components of asphalt concrete, asphalt mixture design and analysis, and asphalt pavement performance prediction. The Strategic Highway Research Program (SHRP) developed the Superpave asphalt pavement mix design method in the early 1990’s.

ASPHALT PAVEMENT MIX DESIGN TYPE SELECTION

Superpave asphalt mixtures are to be used for the following type projects:

1. New construction of multilane divided highways where the mainline pavement is asphalt pavement.
2. Overlay or 3R type projects on existing multilane divided highways where the asphalt pavement overlay is 3 inches or more.
3. Overlay type projects on existing National Highway System (NHS) highways where the asphalt pavement overlay is 3 inches or more.
4. Projects on other highways where approved by the Deputy State Highway Engineer for Development or Operations.
Marshall asphalt pavement mixture types will be permitted to be used on all other projects.

SPECIFICATION SELECTION CRITERIA

There are three specifications available when identifying the asphalt requirement for projects. Specifications Sections 401, 402 and 410 shall be used based on project criteria.

- **Sections 401** is the standard asphalt pavement specification, covering most roadways.
- **Section 402** is utilized for roadways needing polish resistant aggregates to promote skid resistance are the Specifications that have been used historically for project plan development.
- **Section 410**, “Percent Within Limits”, is a specification for use when there is a need for performance related results. This Specification uses mathematical models to quantify relationships between quality characteristics and product performance. These characteristics include mat density, asphalt content, bond strength and others, with samples taken directly from the roadway. Acceptance according to Section 410(PWL) shall be limited to the top two layers of the pavement, scratch and P&L do not count as a pavement layers. Other materials below the top two layers shall be accepted in accordance with section 401.

Section 410 (PWL) of the Specification shall be used on the following project types:

1. New Construction where the mainline is asphalt pavement.
2. Overlay projects on existing multilane divided highways.
3. Overlay projects on any National Highway System (NHS) routes, as found on the Divisions website using the latest version of the “Annual Roadway Inventory Statistics”
4. Projects on other highways where approved by the Deputy State Highway Engineer for Development or Operations.

Additionally, a project must meet the following specific requirements for the use of Section 410:

1. Projects exceeds 5,000 tons in any asphalt layer either of the top two asphalt layers (scratch and P&L do not count as layers)
2. The overall width of asphalt equals or exceeds 20 feet in width
3. Project paving is continuous for a minimum of 1500 feet
4. Posted speeds equal to or greater than 35 mph

The Specifications in Section 401 and 402 of the Specification shall be used for all other projects.

DETERMINATION OF EQUIVALENT SINGLE AXLE LOAD (ESAL)

The “ESAL Calculator” program shall be used to calculate the 20-year projected design ESALs for all projects unless one of the following applies.

1. The “ESAL Calculator” program produces a value exceeding 10,000,000.
2. When a traffic study has been performed. (i.e. When traffic movements or traffic counts are provided by the Traffic Modeling and Analysis Unit of the Planning Division.)
3. On roadway realignment projects that exceed 1000 feet of relocated roadway.
4. When there is an expected development in the area that may change or alter the nature or character of the expected traffic. (i.e. Shopping centers, schools, etc.)
5. The project is on the CRTS (Coal and Resource Transportation System).

The ESAL Calculator program can be obtained from the West Virginia Department of Transportation's Engineering Publications and Manuals website at http://www.transportation.wv.gov/highways/engineering/Pages/Manuals.aspx, then under the “Paving” heading choose “ESAL Calculator”.

When the ESAL Calculator program cannot be used to calculate the ESALs, then the ESALs or the percentage of traffic in each of the 13 classes shall be obtained from the Traffic Monitoring Unit of the Performance Management Group. The Traffic Monitoring Unit can be emailed at TMATrafficMonitoring@wv.gov. The designer is cautioned that the development of appropriate data to establish accurate ESAL estimates should be requested prior to the Design Study Office Review (if there is one) or prior to the Preliminary Field Review (if there was not a design study.)

SURFACE PREPARATIONS

Milling is used to remove surface distresses, create a better bond for an overlay, restore cross slope, and maintain vertical geometric properties, such as bridge clearance, guardrail height, and grade with gutter area. Milling shall be the preferred method of correcting deviations to the road surface prior to resurfacing.

When milling is specified by the contract, the thickness of milling specified by the Designer shall be at least ¼” into the layer just below the layer(s) being removed. The intent is to mill off entire layers, and not leave any partial layers.

*Milling of Asphalt Pavement Surfaces, Section 415 of the Specifications, contains three types of milling: Standard Milling, Fine Milling, and Micromilling. These are differentiated primarily by the carbide tooth spacing, typically 15, 8, and 5 mm respectively, resulting in finer textured surfaces. These milling types specify the final surface texture prior to any overlay. The following describes the conditions in which the designer should use each type of milling:

Standard Milling - Used as the default milling of asphalt pavement. It is intended to be used when the Division plans to remove existing asphalt pavement to correct deviations less than 1 inch, without a high level of profile and slope control.

Fine Milling - Used when the Division intends to overlay the milled surface with a 2 inch or less asphalt course. It shall also be used when the contract contains pay items from Section 410 of the Specifications, *Asphalt Base and Wearing Courses, Percent Within Limits (PWL)*. It is intended be used when control of the profile and slope of the milled surface is important. Fine milling shall only be used if there is a minimum of 5,000 SY of fine milling.

Micro Milling - Used for smoothness correction, skid correction, bump and/or grade corrections on existing or newly paved surfaces. This milling is typically less than an inch.
It is not intended to be used when additional asphalt will be placed on the milled surface.

If fine milling is needed and multiple milling passes are necessary, standard milling shall be used to cut down to one inch above the final prepared surface. The designer shall document in the plans the estimated thickness of each type of milling.

ASPHALT MATERIAL (TACK COAT)

Asphalt Material (Tack Coat) (Section 408) shall be specified for placement on all existing pavement prior to placing asphalt pavement. If the designer can anticipate phased construction where part of the base or intermediate course will be open to traffic prior to final lift placement additional Asphalt Material should be included.

SCRATCH

Scratch Course is normally used in rehabilitation or resurfacing projects that do not contain a milling item. Scratch should be used to correct rutting and other deviations up to about one inch when the milling operation will cause an unnecessary disruption to the traveling public. If milling is performed on the project, Scratch Course shall not be used.

Scratch Course can be placed over the entire project or to the limits established by the designer. If the Scratch Course is not to be placed over the full width of the project, it shall be specified full lane width increments. Although Scratch Course can be placed over the entire project, it is not a constant thickness layer. The term "Scratch Course" comes from the method of placement of this item. The paving equipment is set to drag on or “scratch” the high areas of the existing pavement, only depositing material in the low areas; thereby creating a smooth surface on which to place the next layer of asphalt pavement.

Scratch course may be specified as a 9.5 mm or a 4.75 mm mix.

Scratch Course shall be shown on the plan typical sections as a line without a thickness or application rate. Scratch Course is not included in the structural design of the pavement.

Scratch Course shall not be used on new construction.

PATCH AND LEVEL

Patching and Leveling is to be placed at various locations throughout the project to remove irregularities in the existing pavement, such as dips, or to raise the outside edge of the existing pavement to provide a uniform template prior to placing a base or wearing course. Patching and Leveling shall not be specified as a continuous layer or course to be placed over the full width and length of the project.

Patching and Leveling shall be used only in resurfacing or rehabilitation projects, not in the construction of new pavements. It shall be specified when the deviations in the existing pavement are 1 inch or greater in depth.
Patching and Leveling shall be shown on the plan typical sections as a layer with thickness specified as "variable - 2" maximum lift thickness. No application rate shall be shown. Patching and Leveling thickness is not included in the structural design of the pavement.

PERFORMANCE GRADED (PG) BINDER TYPE SELECTION

Binder Selection will be based on the design ESAL estimate for all projects.

<table>
<thead>
<tr>
<th>Binder</th>
<th>ESALs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG64S-22</td>
<td><20 million</td>
</tr>
<tr>
<td>PG64H-22</td>
<td>20 million – 30 million</td>
</tr>
<tr>
<td>PG64E-22 (Polymer Modified Binder)</td>
<td>See below</td>
</tr>
</tbody>
</table>

While rare, for colder areas of the state, a lower binder grade of PG 58S-28 may be appropriate. If unsure, the designer can contact the Asphalt Group of Materials Control, Soils, and Testing Division at DOHasphalt@wv.gov.

When using anything other than PG64S-22, the binder grade shall be provided on both the general notes sheet and the typical section sheet(s) showing the pavement details.

PG 64S-22 binder may be used in asphalt placed below the top two lifts in any pavement section. Scratch course and patching and leveling are not identified as lifts.

POLYMER MODIFIED ASPHALTS (PMA) OR NON STANDARD GRADE

The binder PG 64E-22, which is a polymer-modified binder, is required to be used in the following cases:

1. For the surface lift on roadways facilitating access to industrial parks, warehouses, production facilities, etc.
2. High Performance Thin Overlay (HPTO) asphalt pavement in accordance with Special Provision 496. Since PG 64E-22 is required by the Special Provision a plan note is not required.

A binder grade associated with a higher ESAL count may be used at the discretion of the responsible engineer on projects where the pavement exhibits severe rutting or shoving problems due to heavy traffic conditions, such as:

1. Intersections with very heavy truck traffic
2. Truck climbing lanes and ramps

PMAs have shown great success as being a long-term solution to severe rutting problems. Due to the additional cost of a PMA, it shouldn’t be used on any project without first repairing base failures and removing excessively rutted pavement. PMA shall generally be used only in the skid surface mix (preferably a 12.5 mm mix) but may also be used in the underlying courses depending on the severity of the traffic conditions. Always use the preferred thickness from the Superpave asphalt pavement recommended lift thickness tables as a minimum thickness when using PMA.
Any mix design to be used as a scratch course shall not be specified to use PMA.

PMA Pavement quantities shall be used in increments of 400 tons due to minimum requirements necessary for ordering of material.

PG 64S-22 binder should be used in asphalt placed below the top two lifts in any pavement section. Scratch course and patching and leveling are not identified as lifts.

PAVEMENT STRUCTURE

BOTTOM COURSES
When developing the overall pavement thickness, it is recommended the designer use 25 mm mix as the bottom lifts. When a 25mm mix is to be used on a section 410(PWL) project, acceptance of the 25mm layer(s) shall be in accordance with section 401.

Where Marshall is permitted, a Marshall Type 2 Base Course shall be specified in lieu instead of a Type 1 Base when the total base course thickness is less than or equal to 3.25 inches.

INTERMEDIATE COURSES
On new construction or multi-lift projects a Superpave 19mm or Marshall Type 2 base mixture shall be utilized below the surface course to promote smoothness in the final pavement.

SURFACE COURSES
The wearing course is a single lift constant thickness layer to be placed over the entire pavement surface. The wearing course is the riding surface on which traffic travels. A Superpave 4.75 mm, 9.5mm, or 12.5mm or Marshall Type 1 or Type 3 Wearing mixture is the mix type to be used as the surface course. PMA can also be used if traffic warrants. A Marshall Type 4 Wearing is intended for use in heavy truck traffic situations, note that a wearing 4 is a visually coarse mixture.

A skid mix Section 402 shall be used as for the surface course on projects with a current ADT of 3000 or more vehicles per day. On projects meeting this ADT criteria, the wearing course shall be a skid resistant mix in accordance with Section 402 of the Specifications. Only Superpave 9.5mm and 12.5mm mixtures and Marshall Type 1 and Type 4 wearing mixtures shall be specified as a skid resistant mix.

A 4.75 mm mix shall only be used for pavement preservation applications or as a surface course over an intermediate course in multi-lift applications. High performance thin overlays may be used for pavement preservation on roads with ADT of greater than 3000 VPD or more vehicles per day.

SUPERPAVE MIX TYPE RECOMMENDATIONS

The following table provides a list of Mix Type recommendations for the designer to use when preparing pavement lift thicknesses for the typical section. Pavement designs provide an overall thickness of asphalt pavement and the designer is generally left to make the decision on bottom, intermediate, and surface course thickness. The designer should use recommendations found in
the Pavement Structure section, as well as minimum and maximum thicknesses from the table.

<table>
<thead>
<tr>
<th>Recommended Lift Thickness for Superpave Asphalt Pavement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix Type (mm)</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>4.75</td>
</tr>
<tr>
<td>9.5</td>
</tr>
<tr>
<td>12.5</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>

Note 1: Minimum Thickness with Polymer Modified Binders

MARSHALL MIX TYPE RECOMMENDATIONS

A. Marshall Bottom and Intermediate Courses (Base Courses): It is recommended that in multi-lift pavements when Type 1 Base Course is used, an intermediate course (the top lift of base course) be a Type 2 to improve the smoothness of the finished pavement. This would eliminate the use of a Scratch Course prior to placing the surface course.

a. Type 1 Base Course shall be specified when the total base course thickness for new construction is greater than 3.25 inches. On resurfacing projects, Type 1 Base Course shall not be specified where temporary traffic control requirements prohibit an edge drop-off of 3 inches.

b. Type 2 Base Course shall be specified when the total base course thickness is less than or equal to 3.25 inches.

<table>
<thead>
<tr>
<th>Recommended Lift Thickness (inches) for Marshall Base Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix Type</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

B. Marshall Wearing Courses: The wearing course is a single lift constant thickness course to be placed over the entire pavement surface. The wearing course is the riding surface on which traffic travels. Type 4 Wearing Course is intended for use in heavy truck traffic situations.

<table>
<thead>
<tr>
<th>Recommended Lift Thickness (inches) for Marshall Wearing Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix Type</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

* 1½ inch thickness on resurfacing projects where the Wearing Course is the only asphalt pavement material being placed exclusive of Patching & Leveling and Scratch Courses.
PLAN REQUIREMENT

Projects will show the 20-year projected design ESALs on both the general notes sheet and the typical section sheet(s) showing the pavement details. This includes new construction, reconstruction, AND resurfacing projects (including ALL bridge replacement projects regardless of the length of pavement placed). The design ESALs shall be shown for the mainline and all other affected roadways where more than 500 feet of pavement is being placed.

The aggregate used in asphalt mixtures can be either primarily stone and gravel, or slag. The aggregate used is up to the contractor, and typically depends on what the contractor has readily available that also meets mix requirements. Mixes with the two aggregate types have different densities; as such, estimated weight quantities will be different for mixes with each aggregate type. Alternates for these two shall be listed in the plans, and the contractor will bid appropriately.

The following is an example of how to list alternate asphalt pavement items in plans:

BB1 401001-042 SUPERPAVE HMA BASE CRSE, SG, TY 25, TN (Pavement Repair)
BB2 401001-043 SUPERPAVE HMA BASE CRSE, S, TY 25, TN (Pavement Repair)

PLAN REQUIREMENTS WHEN USING MARSHALL MIX DESIGN

In addition to the requirements listed above, projects using Marshall asphalt pavement, including District-designed projects, will designate the use of “Medium Marshall Mix Design” or “Heavy Marshall Mix Design” as well as the design ESALs on both the general notes sheet and the typical section sheet(s) showing the pavement details. The designer should note that the terms “Medium” and “Heavy” refer to Equivalent Single Axle Loads (ESALs), and not to the quality of the asphalt pavement. After determining the ESALs, the mix design type shall be determined from the following criteria.

Medium Marshall Mix Design - This design is intended for use on local service roads or rural resurfacing projects with a 20-year projected design ESALs of less than 3,000,000.

Heavy Marshall Mix Design - This design is intended for use on new construction projects and on projects with a 20-year projected design ESALs of equal to or greater than 3,000,000.

QUANTITY ESTIMATING

ASPHALT PAVEMENT - The quantity for asphalt pavement shall be estimated at 1.98 ton/cy for stone and gravel mixes, 1.89 ton/cy for slag mixes and 2.10 ton/cy for steel slag mixes.

PATCHING AND LEVELING - The quantity for Patching and Leveling Course shall be estimated by multiplying the nominal depth of the irregularity to be repaired plus ¾ inch by the irregularity’s surface area. Then the conversion rates of 1.98 ton/cy for stone and gravel mixes, 1.89 ton/cy for
slag mixes and 2.10 ton/cy for steel slag mixes will be utilized.

SCRATCH COURSE - The quantity for Scratch Course shall be estimated at a thickness of one-half inch (0.028 ton/sy) for the entire area to be covered with Scratch Course. If the Specification allows, Scratch Course may alternatively be estimated by the square yard. Scratch Course shall not be used if there is Milling on the project, or if there are more than two lifts of asphalt being placed.

ASPHALT MATERIAL (TACK COAT) - The quantity for Asphalt Material (Tack Coat) shall be estimated using the undiluted rates as indicated in Table 408.11 in the Specifications. No application rate will be shown on the typical sections.

SMOOTHNESS – If a project meets the requirements of Section 720.6 of the Specifications, smoothness testing shall be requested by the designer through the Request Form available at MCS&T’s Tool Box at https://transportation.wv.gov/highways/mcst/Pages/tbox.aspx. If the test results are available, the results shall be included the PS&E submittal. If not available, then the request for testing shall be included in the PS&E submittal. If the results arrive before letting, then the results shall be included in an amendment. If too late for an amendment, then the results shall be provided to the District Construction Engineer.

SPECIAL SITUATIONS

GENERAL
The Specifications have been written to account for the majority of the situations that would occur during construction. However, there are always special situations that require the designers’ attention.

Specification requirements shall only be altered after careful consideration and when, in the opinion of the designer, there is no practical way for the work to be performed in accordance with the Specifications and a project specific special provision shall be developed as outlined in DD-105.

COMPACTION
The specification density requirement in the of the Specifications shall not be modified when asphalt pavement is placed at normal paving widths. It is possible that asphalt pavement will be placed in certain areas of the project where densities of this magnitude cannot be obtained. These areas usually have an irregular shape, which will not allow the proper use of compaction equipment. Listed below is a situation where the density specification may be modified by plan note and the plan note to be used.

<table>
<thead>
<tr>
<th>Situation</th>
<th>Plan Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete pavement repair</td>
<td>Compaction testing shall be in accordance with the Lot-by-Lot method and the rollerpass method shall not be used for acceptance testing for compaction. The engineer may reduce the target density requirement if the contractor has made every reasonable effort at obtaining the required density.</td>
</tr>
</tbody>
</table>
Note 3: If the proper density is not obtained during placement, traffic will continue to compact the asphalt pavement in the pavement repair area, causing additional settlement. This will be very noticeable because the surrounding overlay will be placed on the existing concrete pavement, which is rigid and will not settle.

When overlaying Portland Cement Concrete Pavement (PCCP) the concrete is sometimes in need of repair. Whether this is an initial overlay or a subsequent overlay, the designer shall examine the extent of the needed PCCP repairs and evaluate whether to repair with Patch and Level, to perform proper concrete pavement repairs, or to remove the PCCP through rubblization or another process prior to the asphalt overlay. The use of Patch and Level is restricted to those projects with a few shallow repairs when the cost of mobilization for concrete repairs is high. PCCP removal should be considered only when the existing pavement is extremely distressed. In addition to compaction, consideration shall be given to smoothness, temporary traffic control, and long term impacts to the traveling public.