WV Needs Assessment

Presented to: Blue Ribbon Commission

Presented by:
Wes Stafford & David Hurst
CDM Smith

December 13, 2012

HIGHWAY & BRIDGE NEEDS OVERVIEW

- Methodology
- Results and Expectations
- How to Incorporate in Review
 - HERS-ST
 Roadway Needs
 - NBIASBridge Needs
 - Combine to determine full needs picture for highway network

HIGHWAY OVERVIEW

HERS-ST

- Highway Economic Requirements System State Version
- Estimates future highway investment needs based on benefit/cost

evaluations

- Pavement needs
 - Resurface, reconstruct
- Capacity needs
 - Add/widen lanes, shoulders
- Alignment needs
 - Vertical and horizontal alignments
- Needs based on deficiency and feasibility
- Operates on existing network

HIGHWAY OVERVIEW

INPUTS

- Improvement Costs
 - Unit costs per lane mile
- Run Specifications
 - Settings and objectives of the model run
- Parameters
 - Policy decisions on how to maintain the roadways
- Deficiency Levels
 - Minimum tolerable conditions and design standards

HERS-ST will help you answer...

- How do changes in investment levels affect the condition and performance of the highway system?
- What levels of investment are needed to maintain current highway performance?
- What is the cost of implementing all potential improvements in which benefits > costs?
- What are reasonable performance targets given funding, and other objectives?

HIGHWAY OVERVIEW

- What Isn't HERS-ST?
 - It is not a transportation model
 - It doesn't estimate demand, you estimate demand for it
 - It doesn't assign traffic through a network
 - It doesn't re-route trips when capacity is added

BRIDGE OVERVIEW

NBIAS

- National Bridge Investment Allocation System
- Estimates future bridge needs
- Results shown as
 - Number of bridges
 - Improvement cost per improvement type
- Needs categorized by improvement types:
 - Replacement
 - Widening
 - Raising
 - Strengthening
- What level of funding is needed to address all needs?
 - By functional classification
 - Backlog and Accruing

BRIDGE OVERVIEW

- What Isn't NBIAS?
 - NBIAS does not identify new location roadway/bridge needs
 - State Transportation Improvement Program (STIP)
 - Not a Transportation Model

HIGHWAY AND BRIDGE NEEDS ANALYSIS

- What level of funding is needed to address all needs?
- What needs can be addressed under a budget constraint?

NEEDS ANALYSIS

Draft Derivation of Suggested HERS and NBIAS Constrained Funding Levels								
33		Figures in \$2						
A WVDOT Highway Fund Expenditure Estimates Forecast and Historical Funding Comparison		(000)	Notes					
1 25 year revenue estimate (all SRF)	\$		WSA "high" forecast					
2 Annual Average	\$		25 year period - less than historic average see below					
3 FY99-FY08 SRF	\$		WSA historical revenue and expenditure memo (minus bonds)					
3 WV SRF Revenue FY99-FY03 average	\$		WSA historical revenue and expenditure memo					
4 WV SRF Revenue FY04-FY08 average	\$		WSA historical revenue and expenditure memo					
5 WV SRF Revenue FY99-FY08 average	\$		WSA historical revenue and expenditure memo					
· ·			·					
B Reductions to Forecast for HERS and NBIAS Constrain	ned N							
1 SRF Revenues	\$		WVDOT FY2009 6-year road program					
2 Routine maintenance			Analysis of WVDOT FY2009 6-year road program					
3 Takedown for new construction			WVDOT FY2009 6-year road program					
4 Debt Service			WSA historical revenue and expenditure memo					
5 Total	•	40%						
6 Estimated Bridge and Highway Const Budget (FY2009)	\$		Using 6 year program					
7 Estimated NBIAS and HERS Budget (from Forecast)	\$	564,720	Using WSA Revenue Estimate					
C Highway - Bridge Split								
1 HERS Annual Highway Unconstrained Needs	\$	1,092,750	WSA Analysis					
3 HERS % of Total Needs - Consistent with WV Policy		82%						
4 NBIAS Unconstrained Bridge Needs	\$	99,240	WSA Analysis					
6 NBIAS % of Total Needs - Consistent with WV Policy		18%						
3 Total	\$	1,191,990						
D Constrained Funding Estimate for Highway Needs Ana	lysis							
1 25 year est minus new roads, admin, minor maintenance	\$	564,720						
2 Est Highway HERS Budget	\$		Recommended for HERS Analysis					
3 Est NBIAS Budget	\$	101,650	Recommended for NBIAS Analysis					

RESULT SUMMARY

 Overview of 25-Year Constrained Budget Estimate for Highway and Bridge Needs

Budget Highways = \$463 M annually

Bridge = \$101 M annually

Highways = \$11.1 Billion

\$9.8 Billion for Federal-Aid Roads

\$1.3 Billion for Local Road

Bridges = \$2.4 Billion

- \$300 Million on Coal Resource Transportation System (CRTS) Bridges
- \$2.1 Billion on Non-CRTS Bridges

HIGHWAY RESULTS

Constrained vs. Unconstrained Needs

CONSTRAINED

Expansion

Modernization

Preservation

Improvement Cost (\$M)

Fed	eral Aid	Local	State Total		
\$	4,483	\$ -	\$	4,483	
\$	1,330	\$ 655	\$	1,985	
\$	3,768	\$ 762	\$	4,530	
\$	9,581	\$ 1,417	\$	10,998	

Lane Miles Improved

Federal Aid	Local	State Total
2,475	-	2,475
1,152	479	1,631
12,063	3,271	15,334
15,690	3,750	19,440

UNCONSTRAINED

Expansion

Modernization

Preservation

Improvement Cost (\$M)

Fed	deral Aid	Local	State Total		
\$	7,944	\$ 1	\$	7,944	
\$	13,010	\$ 1,956	\$	14,966	
\$	11,565	\$ 2,276	\$	13,840	
\$	32,518	\$ 4,232	\$	36,750	

Lane Miles Improved

Federal Aid	Local	State Total
3,402	-	3,402
8,583	1,431	10,014
27,926	9,766	37,692
39,911	11,197	51,108

Only Improves Existing Highway System – No System Expansion

HIGHWAY RESULTS

HERS Results - Percent Deficient Roads, Weighted by VMT

BRIDGE NEEDS

Improvement Cost (\$ M)

Replacement Raising Widening Strengthening

No	n-CRTS	CRTS	State Total		
\$ 1,240.9		\$ 155.0	\$ 1	,395.9	
\$	1.1	\$ -	\$	1.1	
\$	116.5	\$ 14.2	\$	130.7	
\$	6.7	\$ -	\$	6.7	
\$	1,365.2	\$ 169.2	\$ 1	,534.4	

Bridges Improved

Non-CRTS	CRTS	State Total
727	87	814
1	-	1
522	55	577
8	-	8
1,258	142	1,400

Maintenance

\$	812.8	\$ 133.9	\$	946.7
\$ 7	2,178.0	\$ 303.1	\$ 2	2,481.1

6,243 State-Owned Bridges

- 740 Urban (12%) and 5,503 Rural (78%)
- 667 CRTS bridges (11%)

EXISTING BRIDGE - SUFFICIENCY RATINGS

2007 Existing Conditions

BRIDGE RESULTS - SUFFICIENCY RATINGS

2032 Unconstrained Conditions (\$125M maximum per year)

Federal Participation

< 80 Rehabilitation

Highway Assumptions/Inputs

cost in	thousands		Reconst	ruction	Resu	rface	Shoulder	Add L	anes	Align	ment
			Lane Widening	Pavement	Lane Widening	Pavement	Improvements	Normal Cost	High Cost	Normal Cost	High Cost
		Flat	2,101	848	1,538	300	56	2,471	3,115	3,115	12,822
	Interstate	Rolling	2,442	869	1,832	321	92	2,795	3,913	3,913	13,550
		Mountainous	3,278	1,006	2,580	354	141	3,878	8,864	4,987	15,239
		Flat	1,786	740	1,348	263	41	2,137	2,767	2,767	11,316
	Principal Arterials	Rolling	2,113	761	1,624	293	68	2,424	3,382	3,382	12,115
		Mountainous	2,390	862	1,842	320	107	2,856	8,015	15,327	15,327
		Flat	1,251	623	870	218	45	1,532	2,026	2,026	10,173
Rural	Minor Arterials	Rolling	1,536	672	1,120	235	66	1,816	2,634	2,634	11,642
		Mountainous	2,085	768	1,613	260	101	2,508	7,355	13,625	13,625
		Flat	1,251	623	869	215	45	1,532	1,970	1,970	9,855
	Collectors	Rolling	1,450	633	1,051	229	59	1,668	2,464	2,464	11,280
		Mountainous	1,965	717	1,520	250	94	2,261	6,747	12,669	12,669
		Flat	976	486	678	168	35	1,195	1,536	1,536	7,687
	Local	Rolling	1,131	493	820	178	46	1,301	1,922	1,922	8,798
		Mountainous	1,533	559	1,185	195	73	1,764	5,262	9,882	9,882
	Interstates/	Small Urban	4,638	2,426	3,894	588	108	5,529	16,785	10,365	24,570
	Expressways	Small Urbanized	4,900	2,447	3,990	696	143	5,937	18,234	11,221	27,479
	= Aprocomay c	Large Urbanized	7,142	4,006	5,558	934	539	9,174	34,094	18,017	51,507
	5	Small Urban	3,955	1,580	3,551	378	84	4,478	11,811	7,629	16,660
	Principal Arterials	Small Urbanized	4,120	1,598	3,639	447	112	4,718	12,662	8,132	18,376
1		Large Urbanized	5,192	2,344	4,578	563	361	6,156	17,783	10,016	20,926
Urban			0.047	4.004	0.540	00.4	7.4	0.000	2.000	0.004	44.007
	Minor Arterials/	Small Urban	2,847	1,394	2,543	324	71	3,302	9,626	6,021	14,927
	Collectors	Small Urbanized	2,943	1,410	2,560	368	87	3,436	10,098	6,299	16,622
		Large Urbanized	3,674	1,885	3,195	451	237	4,441	13,678	8,411	18,479
		Once II I link a	2.240	4.404	2.000	256	FC	2,600	7.605	4.757	44.700
	Local	Small Urban	2,249	1,101	2,009	256	56	2,609	7,605	4,757	11,792
	Local	Small Urbanized	2,325	1,114	2,022	290	68	2,714	7,977	4,976	13,131
		Large Urbanized	2,903	1,489	2,524	357	187	3,508	10,805	6,645	14,598

Highway Assumptions/Inputs

- Limit number of lanes available to add for each FC (total for both directions)
 - 8 lanes for interstates and arterials, 5 rural collectors, 6 urban collectors)
- Volume/Capacity (V/C) ratios are constant at highe FC (example), fluctuate by terrain in lower FC.
- Focus on PSR for the pavement ratings (0 to 5.0 scale)

Bridge Assumptions/Inputs

Cost per square foot (rounded)

Туре	FC	REPL COST	WIDENING COST	RAISE COST	STRENGTH COST
CRTS	all	\$495.00	\$350.00	\$175.00	\$120.00
System	1,2,11,12,14	\$450.00	\$315.00	\$160.00	\$80.00
System	6,7,8,9,16,17,19	\$333.00	\$233.00	\$118.00	\$59.00

- Used lower MTCs on the lower FCs to detour NBIAS from improving
 - Example = local road, <= 400 AADT has 8.5 ft vertical clearance MTC
- Lower AADT bridges have smaller geometrics than larger bridges for MTCs
 - Example = minor collector <= 400 AADT has 7 ft lane width, but all other AADT levels on minor collectors have 8 ft lane width
- CRTS bridges had heavier load rating standards

