
SOIL & AGGREGATE COMPACTION INSPECTOR PROGRAMMED INSTRUCTION MANUAL

Table of Contents

	PAGE
Handouts- Definition of Terms, Overview of Embankment	A-1
Construction, Random Material	
Theory of Compaction	1-1
<u>MP 700.00.24</u>	
Nuclear Density Test by the Roller Pass Method	2-1
<u>MP 712.21.26</u>	
Procedure for Determining the Random Location	3-1
of Compaction Tests	
<u>MP 700.00.50</u>	
Method for Acceptance of Compaction Testing	4-1
<u>MP 717.04.21</u>	
Guide for Quality Control of Compaction	5-1
<u>MP 207.07.20</u>	
Nuclear Field Density I Moisture Test for Random	6-1
Material Having Less Than 40% of+¾ Inch Material	

Material Having Less Than 40% of+3/4 Inch Material

Table for Estimating Percent of Lot Within Tolerance6-	-11
--	-----

Maximum Density – Optimum Moisture Table	6-12			

Tables for Converting Total Dry Density	<u>6</u> -13
to Density of the $-\frac{3}{4}$ Inch Material	

DEFINITION OF TERMS

& HANDOUTS

	Compaction	Sti	Jdv Sheet			
	•		-			
Minimum Temperature 175º Take Temperature Every Hour	92%-96% of density design	<u>phalt</u> 1000' lot				
	Subg	grad	le			
6" Lift Thickness	Granular Material (<3" Particle Size)					
	<u>Pi</u>	<u>pe</u>				
4" Lift Thickness	60"-108"	Pipe	Lot Per 75' of Inst 1 Test per lift, 5 T			
	<u>Sewe</u>					
4" Lift Thickness	1 Lot per 500		ar feet <u>OR</u> one da	y's production		
	<u> </u>	-	vhichever is less)			
	Structure					
4" Lift Thickness			e, lot size determin	ed by engineer		
	<u>MSE</u>					
6" Lift Thickness Select Granular Backfill	500' Lot	Sub-Lot 100' of single lift (at least one per lift)				
	Base Cours	se N	Aaterial			
Test strip lift thickness 6" (other 12")	1 Lot per 2000 linear feet					
	Emban	ıkm	ent_			
Random Material 35%-65% Hard Shale 35%-65% Rock >40% +3/4 Material Lot Size	6" Lift Thickness 12" Lift Thickness 12" Lift Thickness 12" Lift Thickness		>65% Hard Shale >65% Rock	24" Lift Thickness 36" Lift Thickness		
	Nuclear	r Ga	luge			
Standard Count ±2 Density ±4Moisture 4 tries to standardize	Neutron and Gamma Rays are most Damaging Neutron- Moisture Gamma-Density		arm Up Gauge 20 min or Manufacturers' Standards	30FT from metal on a surface at of at least 110pcf		
	Gen	era	1			
<u>Classify</u> material	by particle size	E	Budget project by I	material hardness		

* Data for all lines are given or correspond to an equation on the left side of the page

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS & TESTING DIVISION

LAB NUMBER

AUTHORIZATION NUMBER GENERAL PROJECT NUMBER PROJECT DISTRICT INFORMATION LOT NUMBER ITEM NUMBER Note: Data from CG, CH, OA, & DC always carry over from Left to Right until a new proctor is established.

GAUGE NUMBER			TEST NUMBE	R		1	2	2	3		4		ł	5	
MANUFACTURER'S	STAND	ARDS	DATE												
DENSITY			STATION NUMBER	ft.	General Test										
MOISTURE			OFFSET	ft.	Location /										
GAUGE STANDA	RD COU	INTS	DEPTH BELOW GRADE	ft.			T	JOC	dt.	τOI	.1 /				
DENSITY		-	LIFT THICKNESS	in.			Tda	-nt	:if:	ica	at i	Λn			
MOISTURE			DEPTH OF SOURCE	in.			TUC		- ⊥ ⊥ -						
DB	λį.	DA	TOTAL DRY DENSITY	lb/ft ³	1		—	7		1		0-			
FROM TABLES	Field Density Moisture	MA	MOISTURE	lb/ft ³	1				m Ni						
	al d D Mois	DB	DRY DENSITY -3/4	lb/ft ³	3			From	Tables	s Usi	ng CG,	CH,	& DA		
MB = <u>MA (100</u>)	Fie	MB	MOISTURE	%	4										
DB		CA	EXC. MATERIAL + PAN	grams	2										
CC = CA - CB	₹ z	СВ	PAN	grams	2										
CF = CD - CE	LUS 3/4 MATERIAL DETERMINATION	СС	EXCAVATED MAT.	grams	2										
CG = <u>CF (100)</u>	INAT	CD	PLUS 3/4 MAT. + PAN	grams	2										
CC	3/4 / ERM	CE	PAN	grams	2										
PC = PA - PB	PLUS (CF	PLUS 3/4 MAT.	grams	2										
PD = PC (0.066)	20	CG	PLUS 3/4 MAT.	%	2										
PE = <u>PD (100)</u>		СН	SPECIFIC GRAVITY												
100 + MB						RERUN		RERUN	1	RERUN		RERUN		RERUN	
RERUN PROCTOR		PA	WEIGHT SOIL & MOLD	grams	5										
PE (RERUN) =	ONE POINT PROCTOR	E POINT OCTOR	PB	MOLD	grams	5									
PD (100)			PC	WEIGHT OF SOIL	grams	5									
100 + SG	PR	PD	WET DENSITY	lb/ft ³	5										
	-	PE	DRY DENSITY	lb/ft ³	5										
SC = SA - SB		SA	WET WEIGHT + PAN	grams	This section is performed 6 th ,					n T					
SE = SD - SB	Θ	SB	PAN	grams	-					-					
SF = SC - SE	TOVE DRIE MOISTURE	SC	WET WEIGHT	grams		only used if a rerun procto									
SG = <u>SF (100)</u>	/E D	SD	DRY WEIGHT + PAN	grams	pe	rformed (stove dried mois s used to plot max densit		ed moisture							
SE	STOVE DRIED MOISTURE	SE	DRY WEIGHT	grams	i			ty	ty /						
DE = DB (100)	S	SF	MOISTURE	grams	optimum moisture			_							
DC		SG	MOISTURE	%											
	ЦЦ	OA	OPTIMUM MOISTURE	%	6 if no	Rerun r			proctor d	oesnt pl	lot				
$\overline{X} = \frac{\Sigma DE}{\Sigma}$	AOIST EVAL	OB	PLUS / MINUS TOLER.		+3/-	-4	+3/-	-4	+3/-	4	+3/-	4	+3/	-4	
∩ [−] 5	M	OC	PASS / FAIL												
	DEN EVAL	DC	MAXIMUM DENSITY	lb/ft ³	6 if no Reun needed / 7 if first proctor doesnt plot										
$QL = \frac{X - T}{T}$	ΞÄ	DE	RELATIVE DENSITY	%											
R	Z	X	AVERAGE DE	%	INSPECTOR'S NAME:										
	VTIC	Т	TARGET	%	9	95 INSPECTOR'S									
	TUP	QL	QUALITY INDEX		SIGNATURE:										
*DF found in	EVA	DF	WITHIN TOLERANCE	%		PROJECT'S EVALUATION									
QL Tables	LOT EVALUATION	DG	MIN. FOR 100% PAY	%	80 CHECKED BY:										
	Ľ	DH	PASS / FAIL	YES	N	0	DATE:								

R= Highest DE- Lowest DE Attachment 2 of MP 207.07.20 (Page 6-14)

Attachment 3 of MP 207.07.20 (Page 6-15)

DEFINITION OF TERMS

- **BASELINE:** A reference line for project control usually located along one edge of the project. The baseline is usually abbreviated as: B
- **<u>CENTERLINE:</u>** A reference line established for project location purposes. This line establishes the center of a specific part of the project such as centerline of roadway, <u>I</u>centerline of pipe, etc. The centerline is abbreviated as: C
- **STATION NUMBER:** For location purposes, the baseline and centerline are divided into increments referred to as stations. Stations are usually established on 50-foot intervals and are used to determine distance along the centerline or baseline. Station numbers normally start at the beginning of a baseline or centerline at station 0+00 and increase along the baseline or centerline. Each individual foot up to 99 feet is documented on the right side of the + sign. Increments of 100 feet are documented on the left side of the + sign.

For example: 50 feet is written as 0+50

150 feet is written as 1+50

2,250 feet is written as 22+50

OFFSET: Distance perpendicular (at 90 degrees) from the baseline or centerline. Offsets are followed by the notation "right or Left" to establish which side of the line the distance is measured from. In the direction that the stations progress along the baseline or centerline, everything located along the right side is referred to as "right of baseline" and everything located along the left side is referred to as "left of baseline".

> For example: 60 feet right is 60 feet right of the baseline or centerline. 15 feet left is 15 feet left of the baseline or centerline

BITUMINOUS CONCRETE:

Commonly referred to as asphalt. A roadway paving material consisting of a mixture of asphaltic materials (bitumen) and fine and coarse aggregates. The wet density of bituminous concrete is measured during compaction testing.

AGGREGATE: Relatively inert granular mineral material such as sand, gravel, slag, crushed stone etc. Fine aggregate is material that will pass the No. 4 sieve. Coarse aggregate is material that will not pass the No. 4 sieve. Relatively inert granular mineral material such as sand, gravel, slag, crushed stone etc. Fine aggregate is material that will pass the No. 4 sieve. Coarse aggregate is material that will not pass the No. 4 sieve. Coarse aggregate is material that will not pass the No. 4 sieve.

Soil: Sediments or other unconsolidated accumulations of solid particles produced by the physical and chemical disintegration of rocks, and which may or may not contain organic matter. Soils can be categorized by particle size. Gravels- 3 inches to No. 4 sieve Sand- No.4 to No. 200 sieve

Silt and Clay- No. 200 sieve and smaller

ROCK: Natural solid mineral matter occurring in large masses or fragments.

BASE OR

- **BASE COURSE:** A layer of specified or selected material of planned thickness, constructed on the subgrade or subbase for the purpose of serving one or more functions such as distributing load, providing drainage, or minimizing frost action.
- **EMBANKMENT:** A raised structure of soil, shale, rock or random material, constructed in layers to a predetermined elevation and cross-section.
- FILL: Man-made deposits of natural soils and waste materials.
- **LIFT:** The thickness of an individual layer of soil, aggregate or rock, that is being placed as fill or backfill. The lift thickness can be specified loose or compacted. Example: 8 inches loose or 6 inches compacted. Excessive lift thickness results in poor and non-uniform compaction and the potential for future settlement of the fill.
- **<u>GRADE:</u>** The finished surface elevation of a specified layer.
- **SUBGRADE:** The soil prepared and compacted to support a structure or pavement or pavement system.
- **PROCTOR:** A test method used to determine the relationship between the moisture content and density of soils. The Proctor is named after the person who developed the test method, R. R. Proctor. Some types of Proctors are as follows:

Standard	ASTM D 698 OR AASHTO T-99
Modified	ASTM D 1557 OR AASHTO T-180
WVDOH 1-Point	MP 207.07.20

- **ROLLER PASS:** A WVDOH method of determining the maximum density of a material. This method is applicable to treated and untreated aggregate base courses, select backfill, crushed aggregate backfill, granular backfill, and random material containing 40% or more (by weight) of particles that are retained on the ³/₄ inch sieve (plus ³/₄ inch material). The WVDOH procedure for the roller pass method is MP 700.00.24.
- **<u>COMPACTION:</u>** The application of force or vibration to a material in an effort to densify the material.

DENISTY:	Weight per unit volume. The standard unit for soil, aggregate and asphalt testing is pounds per cubic foot.
WET DENSITY:	The total unit weight per unit volume including water.
DRY DENSITY:	Weight per unit volume of a material after the moisture has been removed.
<u>MAXIMUM DRY</u> DENSITY:	Maximum dry density of a material under optimum moisture conditions.
MOISTURE CONTENT:	Moisture content or water content is the ratio expressed as a percentage of the weight of water in a given soil mass to the weight of solid particles.
<u>OPTIMUM</u> MOISTURE	Optimum moisture content is the ideal moisture content that a particular material requires to achieve its maximum density.
<u>SPECIFIC</u> <u>GRAVITY:</u>	Specific gravity is the ratio of the mass of a unit volume of a material at a stated temperature to the mass of the same volume of water at a stated temperature. Example: Limestone has a specific gravity of 2.7. Therefore, an equal volume is 2.7 times heavier than water.
<u>LOT:</u>	Unit of measurement for the quantity of material being placed and tested. A lot of compaction tests consists of 5 tests.
SUBLOT:	An equal 1/5 portion of a lot. For example, if a lot of bituminous concrete was 1000 feet x 12 feet, then each sublot would be 200 feet x 12 feet.
<u>MATERIALS</u> <u>PROCEDURES:</u>	Abbreviated as MP. These are specific test methods that explain how to perform the individual tests. MP's were generated by the WVDOT (DOH) and are mostly derived from AASHTO specifications and re-written in step by step progression to ease interpretation.

OVERVIEW OF EMBANKMENT CONSTRUCTION

PREPARATION

NOTE: As a certified Compaction Inspector, you must be in possession of or have immediate access to the Standard Specifications, Supplemental Specifications, Project Plans, Special Provisions, Contractor's Quality Control Plan, etc. These documents govern the control of construction, testing, and inspection throughout the course of a project.

WHERE TO BEGIN?

Embankments are the biggest component of a Highway system.

Embankment construction can be broken down into three general phases of construction that a Compaction Inspector may be involved:

- 1. <u>Clearing and Grubbing</u> Section 201, Standard Specifications
- 2. Excavation and Embankment Section 207, Standard Specifications
- 3. Crushed Aggregate Base Course Section 307, Standard Specifications

CLEARING & GRUBBING

Clearing and Grubbing - Section 201, Standard Specifications:

- 1. This work shall consist of clearing, grubbing, removing, and disposing of all vegetation and debris within the construction limits and other areas within the right of way.
- 2. This is also a good time to stockpile topsoil to be used for dressing slopes at the end of fill placement.
- 3. The Compaction Inspector will often verify that the area has been cleared sufficiently and is ready for fill placement.

SLOPES

Slopes - Section 207.3.1, Standard Specifications:

- 1. Slope lines shall conform to plans.
- 2. Slopes lines may only be altered by the Engineer.
- 3. The typical slope line for soil is 2:1.
- 4. Slope lines for rock may vary depending upon rock lithology and hardness.

EXCAVATION

Rock Excavation - Section 207.3.3, Standard Specifications:

- 1. Slopes steeper than 1:1 shall utilize presplitting techniques.
- 2. Control particle size of rock with drill pattern for production drilling.

EMBANKMENT CONSTRUCTION

Placing Embankment – Section 207.7.3.1, Standard Specifications:

- 1. No embankment shall be placed on frozen ground.
- 2. During the process of excavation and embankment construction, the roadway shall be maintained in such a condition that it will be well drained at all times.
- 3. Depositing and compacting embankment in layers shall be started at the lowest point of the fill below grade.
- 4. Each layer shall be placed horizontally across the entire length and width of the fill
- 5. Each layer shall be compacted prior to the placement of the next layer.

LIFT THICKNESS

Section 207.7.3.2, Standard Specifications:

- 1. The contractor shall record material type and lift thickness for all types of embankments.
- 2. The lift thickness will be determined by material type and rock hardness (207.7.3.2.3, 2017 Standard Specs).
- 3. The lift thickness can also be determined by using Table C of MP 717.04.21.
- 4. The lift thickness shall be as thin as the excavated material will permit.
- 5. The largest rock size permitted in any lift is 36 inches.

FILL BENCHES

Benches

Section 207.4, Standard Specifications – Benches to be constructed either above or below the profile grade shall conform to the dimensions shown on the plans or as directed by the engineer.

MP 717.04.21 SUPERCEDES: SEPTEMBER 2019 REVISED: DECEMBER 2020 PAGE 5 OF 10

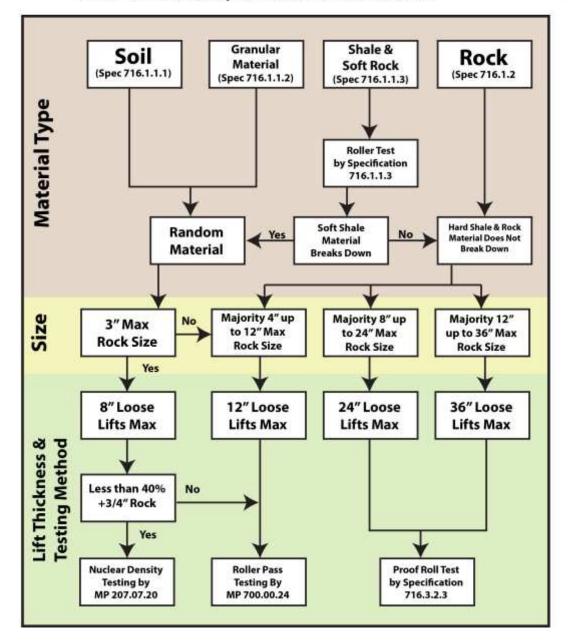


Table C - Guide for Quality Control of Embankment Material

EMBANKMENTS

Embankment Materials are the most important components of a Highway system. The materials can be broken down into three different categories:

- 1. Select Embankment
- 2. Embankment Fill
- 3. Sub-Grade & Base

SELECT EMBANKMENT

Select Embankment- Section 207.7.3.2.3, Standard Specifications:

Rock lifts that are designated as Select Embankment shall contain no more than 15% of other suitable embankment material by visual inspection. The dominant rock size shall be 6 inches and greater.

Select Embankment- Section 211.6, Standard Specifications: Shall be placed in accordance with the plans or as designated by the engineer.

Select Embankment- Section 704.5, Standard Specifications:

Select Embankment may be designated as Special Rock Fill in the plans. Special Rock Fill shall be limestone or sandstone having no more than 30% loss after 5 cycles of the sodium sulfate soundness test.

TYPES OF TESTING LOTS

MP 207.07.20 (PG. 6-4 PI MANUAL)

- "F" Lot Embankment
- "S" Lot Subgrade
- "B" Lot Base
- "P" Lot Pipe and Structure Backfill

Embankment Material – "F" LOTS

Standard Specifications Section 716:

- 1. Section 716.1.1 Random Material
- 2. Section 716.1.1.1 Soil
- 3. Section 716.1.1.2 Granular Material
- 4. Section 716.1.1.3 Soft Shale
- 5. Section 716.1.2 Rock
- 6. Section 716.1.3 Hard Shale

SUBGRADE. - "S" LOTS

Standard Specifications Section 207.9:

- 1. The subgrade shall be 6 inches compacted thickness for all embankment and excavation sections.
- 2. The subgrade material shall consist of granular material.
- 3. The subgrade shall be free of particles larger than 3 inches.
- 4. The subgrade shall be uniformly compacted to the requirements of section 716.

BASE -"B" LOTS

Standard Specifications Section 307:

- 1. Base material shall be placed according to the compacted thickness on the plans.
- 2. The base material shall consist of granular material conforming to the requirements of section 704.6
- 3. The aggregate class of base material will be designated in the plans. (Typically, class 1).
- 4. The base material shall be uniformly compacted to the requirements of section 717

RANDOM MATERIAL

- **Random Material** 716.1.1-Random Material: Random material shall be considered as a mixture of any or all of soil, granular material, or soft shale as described which are permitted by the Engineer to be used in embankment. These are materials that can be incorporated in a 6 inch (150 mm) compacted layer.
- **Softshale** 7.16.1.1.3-Soft shale shall be considered as any of the shales, weak sandstone, weak limestone, claystones or siltstones that break down under three complete coverages with a 1.5 ton per linear foot steel drum roller
- **Rock** 716.1.2-Rock: Rock is defined as sandstone, limestone, or concrete that cannot be incorporated in a 6 inch (150 mm) compacted lift and shall be medium hard or harder.
- **Hardshale** 716.1.3-Hard Shale: Material that meets the description of shale in 716.1.1.3 except that is does not break down under the hardness test shall be considered as hard shale and placed as specified in 207.7.3.2.2 when used as embankment material.

2 Primary Soft Rocks

1)Shale – Can be sandy or silty; Thin 1/8" Laminations (Layers)

2)Claystone- Can be sandy or silty; Chunky

Soil	716.1.1.1-Soil: Soil material shall be considered as layers or deposits of disintegrated rock, lying on or near the surface of the earth, which has resulted from natural processes, such as weathering, decay or chemical action or a combination of these processes. Material shall be considered as soil when more than 25 percent by weight of the grains or particles pass the No. 200 (75 μ m) sieve.
Residual Soil	Residual Soil is a mineral that has weathered or disintegrated in place from primary bedrock. Residual soils are soils that develop from their underlying parent rocks and have the same general chemistry as those rocks
Colluvium	Colluvium is loose Earth material that has accumulated at the base of a hill, through the action of gravity, avalanche debris, and sheets of detritus by soil creep or frost action
Alluvium	Alluvium is a deposit of sand, silt, etc. formed by flowing water and usually deposited in the valleys of large rivers

Soil Classification

(Classified by Particle Size) <u>Silt</u>
<u>Sand</u>
Fine Graves

Topsoil Peat

<u>Clay</u> Lean Clay Fat Clay

<u>Sand</u> Fine Grain Medium Grain Coarse Grain

Peat Loam

Soil Combinations

<u>Clay</u> Sandy Clay Silty Clay <u>Silt</u> Clayey Silt Sandy Silt <u>Sand</u> Clayey Sand Silty Sand

CLAY CHARACTERISTICS

- Very Fine Grained (0.004mm to 0.001mm)
- Cohesive
- Moisture Sensitive (+3 / -4 of Optimum Moisture)
- Easy to Compact at Optimum Moisture (Can use Vibratory or Static Weight)
- Shrink/Swell potential (Especially with finer particle sizes)

SAND CHARACTERISTICS

- Coarse Grained (Minus No. 4 to No. 200 Sieves)
- Non-Cohesive
- Moderately Moisture Sensitive (Needs some Moisture, but not a lot)
- Easy to Compact with a little Moisture (Best to Compact with Vibration)
- Good Friction Resistance
- High Bearing Capacity if Contained

SILT CHARACTERISTICS

- Fine Grained (00.074mm to 0.005mm)
- Lowe Cohesive to Non-Cohesive
- Moisture Sensitive (Water Rises to Surface Under Pressure)
- Difficult to Compact (Prone to Pumping and Rutting at Optimum Moisture, Best to Compact with Static Weight)
- Low Bearing Capacity
- If possible, Silt should be wasted or used to dress slopes!

THEORY OF COMPACTION CHAPTER 1

COMPACTION CONCEPTS - AN OVERVIEW

Compaction is very important when soil is used as an engineering material; that is, when the structure itself is constructed of soil. Earth dams and highway embankments are typical examples of earth structures. If soils are dumped or otherwise placed at random in a fill, the result will be an embankment with low stability and high settlement.

The embankment and base materials provide the foundation for the pavement. The performance of the pavement depends on the quality of materials and construction techniques used to place the underlying materials. The placement of materials in an embankment, subgrade, base, or pipe and structure backfill, involves several factors which influence the quality of the final product. The goal is to provide materials that possess the engineering properties required by the design.

Construction personnel must be experienced and knowledgeable in the placement of materials and recognize and resolve problems as they are encountered. Each type of material has unique properties which must be addressed in design and construction. Failure to correctly place materials can have devastating effects. The problems can range from rutting of the pavementto excessive settlement and other instabilities such as landslides. Settlement always occurs to some degree but must be minimized and uniform over a largearea. Differential settlement can be very detrimental to the performance of the roadway.

Earthwork construction consists of placing lifts of material. Sound engineering decisions must be made before each lift is covered. The performance of the roadway depends on the daily decisions and workmanship as the construction progresses. Errors are difficult to correct and poor construction can lead to failures and large financial expenditures.

COMPACTION

Compaction is the densification of soils by the application of mechanical energy. It may also involve modification of water content and blending of soils. Coarsegrained soils are efficiently compacted by vibration. In the field, hand- operated vibrating plates and motorized vibratory rollers of various sizes are quite efficient for compacting shallow deposits of sand and gravel soils. Rubber-tired equipment can also be used efficiently to compact sands. In certain situations, large free-falling weights are used to dynamically compact loose granular deposits and fills. Fine-grained and cohesive soils may be compacted in the laboratory by falling weights and hammers, by special "kneading" compactors, and even statically. In the field, common compaction equipment includes hand-operated tampers, sheepsfoot rollers, rubber-tired rollers, vibratory rollers, and other types of heavy compaction equipment.

The objective of compaction is to improve the engineering properties of the soil mass. By compaction:

- · Detrimental settlements can be reduced or prevented.
- Soil strength can be increased, and slope stability improved.
- · Bearing capacity of pavement subgrades can be improved; and

• Undesirable volume changes, for example, caused by frost action, swelling, and shrinkage, may be controlled.

THEORY OF COMPACTION

Soils form the foundation for most highway structures. The final structure, whether it is a pavement or a bridge structure, can only be as durable as the foundation upon which it rests. Compaction of the soil is necessary to assure that the soil or soil aggregate structure will perform and support its intended design loads. Material that is densely compacted will support more load than uncompacted material.

The fundamentals of compaction of cohesive soils were developed by R. R. Proctor in the early 1930s. Proctor published a series of articles in Engineering News-Record (Proctor 1933) on the principles of compaction, and in his honor, the standard laboratory compaction test he developed is called the Proctor test.

Proctor noted that compaction is a function of four variables: (a) dry density, γ_d ; (b) water content, w; (c) compactive effort; and (d) soil type. Compactive effort is a measure of the mechanical energy applied to a soil mass. In the field, compactive effort is the number of passes of "coverages" of the roller of a certain type and weight on a given volume of soil. In the laboratory impact compaction test, a hammer is dropped several times on a soil sample in a mold. The mass of the hammer, height of drop, number of drops, number of layers of soil, and the volume of the mold are specified.

The "percent compaction" is a comparison between the compaction achieved in the field (in place density) and the maximum compaction possible for that soil type when compaction is performed under a set of controlled conditions. These controlled conditions exist in the laboratory. AASHTO T-99 and T-180 are used to determine

the maximum possible density that can be expected for that specific soil type using normal construction compacting efforts.

Maximum density of a soil or soil-aggregate is also dependent on the optimum moisture content of the soil being tested. Since it is possible that several types of soil will be used on a particular construction project, it is necessary for a laboratory to test and develop the different moisture-density relationships for each soil or soil aggregate that will be encountered. A soil or soil aggregate mixture which is not compacted to the required density may subside or undergo excessive settlement due to its own mass or traffic loadings, causing failure of the highway structure. It is critical that these tests and procedures, which determine the maximum density and the optimum moisture content, be performed properly.

The process of compaction for cohesive soils can best be illustrated by the Proctor test. Several samples of the same soil, but at different water contents, are compacted according to the standard Proctor test specifications given earlier. The total or wet density and the actual water content of each compacted sample are measured. Then the dry density for each sample can be calculated from

Wet Density:
$$D_{wet} = \frac{Total Mass of wet Sample, W_s}{Total Volume of Sample, V_t}$$
Dry Density: $D_{dry} = \frac{Wet Density, D_{wet}}{Total Volume of Sample, V_t}$

When the dry densities of each sample are determined and plotted versus the water contents for each sample, a curve called a compaction curve for standard Proctor compaction is obtained (See Figure 4.1) Each data point on the curve represents a single compaction test, and usually four or five individual tests are required to completely determine the compaction curve. This curve is unique for a given soil type, method of compaction, and (constant) compactive effort. The peak point of the curve determines the maximum dry density γ_d max at a water content known as the optimum water content W_{opt} [also called the optimum moisture content (OMC)].

Note the maximum dry density is only a maximum for a specific compactive effort and method of compaction. This does not necessarily reflect the maximum dry density that can be obtained in the field. Increasing the compactive effort tends to increase the maximum dry density, as expected, but it also decreases the optimum water content.

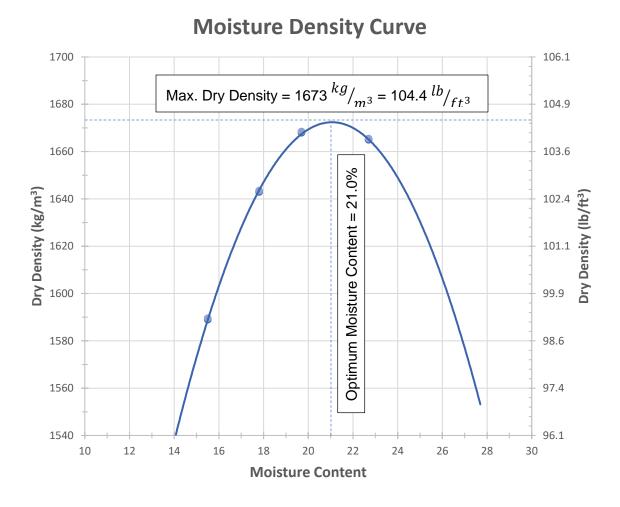


Figure 4.1 Example Moisture-Density Curve

As the water content increases, the particles develop larger and larger water films around them, which tend to "lubricate" the particles and make them easier to be moved about and reoriented into a denser configuration. However, eventually a water content is reached at which the density does not increase any further. At this point, water starts to replace soil particles in the mold, and because the density of water is much less than the density of the mineral grains, the dry density curve starts to fall off.

EMBANKMENTS

Usually, materials that are to be used to construct the embankment are selected by the contractor and approved by the engineer. Many agencies have general requirements in their standard specifications for the soil types that are acceptable for embankment construction. These requirements or any special provision for the project should be strictly adhered to so that only suitable materials are used.

Suitable materials, if properly placed and compacted, will make satisfactory embankments. Water content in the natural state has no bearing on suitability. However, materials with excessive moisture will require drying before compaction, or they must be replaced with materials having proper water content. During excavation, if materials are uncovered that have an excessive water content, construction personnel should refer to the contract specifications. If there is still a question about whether to use the wet soils, the engineer should be consulted.

COMPACTION OPERATIONS

General

Compaction of a soil layer is probably the most important aspect of proper embankment construction. A uniform, densely compacted embankment will provide a satisfactory platform upon which to place the base courses and pavement. The word "uniform" is important in that uniform conditions during construction of the embankment will result in uniform behavior of the pavement, assuming that foundation conditions do not enter the picture. The benefits of good compaction are substantial, and the consequences of poor compaction are severe. Compaction increases bearing capacity, slope stability, and resistance to frost action. It also decreases permeability and future settlement. Inadequate compaction may result in general and differential subsidence, which causes depressions and potential for premature failure of the pavement.

Heaving or Pumping

Heaving or pumping is an elastic-type deformation of the soil. When loaded, the material deforms and as the load is removed, the material springs back to its original position. The construction equipment looks as if it is riding on a wave as it travels over the fill. The soil will deflect, and a wave will be created ahead of the wheel, but once the equipment moves on, the area looks the same, although there may be some cracking of the surface. Heaving occurs when there is excess moisture in the soil that does not have time to drain as the load is applied. The load is then borne jointly by the soil and the pore water pressure. This gives a temporary elasticity to the soil, thus creating the heaving or pumping effect.

Note that, when in this condition, the strength of the soil is substantially reduced. Repeated loadings will continue to create cumulative pore pressures and may ultimately result in shear failure or rutting. Continued compaction operations can only worsen the situation.

Rutting

Rutting is a surface shear or bearing failure. As the equipment moves across the embankment, the loads imposed exceed the shear strength of the soil, the wheels sink, and rutting occurs. Rutting destroys the previous compaction and makes it impossible to place the next lift to a uniform thickness. This is particularly critical at the top of subgrade.

Compaction Equipment

There are many types and sizes of compaction equipment. The equipment ranges from large rollers such as pneumatic tired, vibratory, tamping foot etc. to small walk behind or handheld compactors. In any case, the equipment should be of the proper type and size to provide the compactive effort required for the material being placed. For example, a vibratory roller is well suited for a granular type of material. Vibrations move the finer particles into void spaces. For cohesive soils, a tamping foot (sheep's foot) roller is ideal. The tamping feet provide a kneading action which compacts the material.

The efficiency of compaction equipment often depends on such things as ballast, roller speed, vibration amplitude and frequency, etc. Checking the equipment should be part of the construction activities. The compaction equipment selected should be determined by the type of soils encountered.

Pneumatic-tired compactors achieve compaction by the interaction of (a) wheel load, (b) tire size, (c) tire ply, (d) inflation pressure, and (e) the kneading action of the rubber tires as they pass over the lift. Pneumatic-tired rollers should be ballasted to meet at least the minimum wheel load.

Vibratory drum compactors develop their compactive effort by load and vibrations. Five machine features must be known in order to rate vibratory rollers: (a) unsprung drum weight, (b) rated dynamic force, (c) frequency at which the rated dynamic force is developed, (d) amplitude of the drum vibration, and (e) drum width. The dynamic force is proportional to the square of the frequency. A reduction in the frequency will significantly reduce the compactive force.

Compaction of granular soils is mostly due to the dynamic force created by a rotating eccentric weight. Vibratory compactors dramatically lose their effectiveness when the

vibration is shut off because the compaction is due solely to the weight of the machine.

When sheepsfoot rollers are used, the feet must penetrate the loose lift. If they ride on top, the machine is too light, and the ballast must be increased. With succeeding passes, the feet should "walk out" of the layer. The number of passes required for the feet to walk out of the layer will be used to control compaction of subsequent layers. If the feet do not walk out, the machine is too heavy and is shearing the soils, or the soil is too wet.

MATERIALS

Materials to be compacted must be of a satisfactory quality and possess the necessary properties for the particular use. Poor quality materials may not perform properly or require extensive time and expense to improve.

In many cases embankment materials are excavated on the project. The quality of these materials may vary, and it is the designer's responsibility to adequately evaluate the material properties and address their use in design. The disposition of poor materials should be addressed in the design and not left to construction personnel to handle without specific guidelines.

Poor quality materials may be improved. This might include reducing the moisture content by aeration, adding a stabilizer such as lime or cement, mixing with higher strength materials, etc.

If off-site borrow sources are used, the material must be of satisfactory quality.

The following tables and figures provide general descriptions, properties and classification of various soils and soil components. Table 4.1 defines soil components and their properties. Table 4.2 and Figure 4.2 define the AASHTO classification system of soils and soil-aggregate mixtures. Table 4.3 and Figure 4.3 define the Unified Soil Classification System (USCS). Table 4.4 provides a comparison and cross referencing of the AASHTO and uses methods.

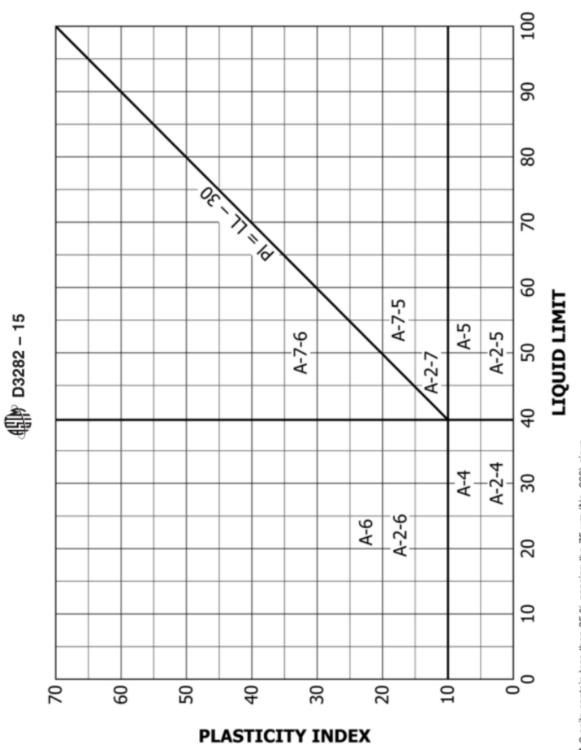
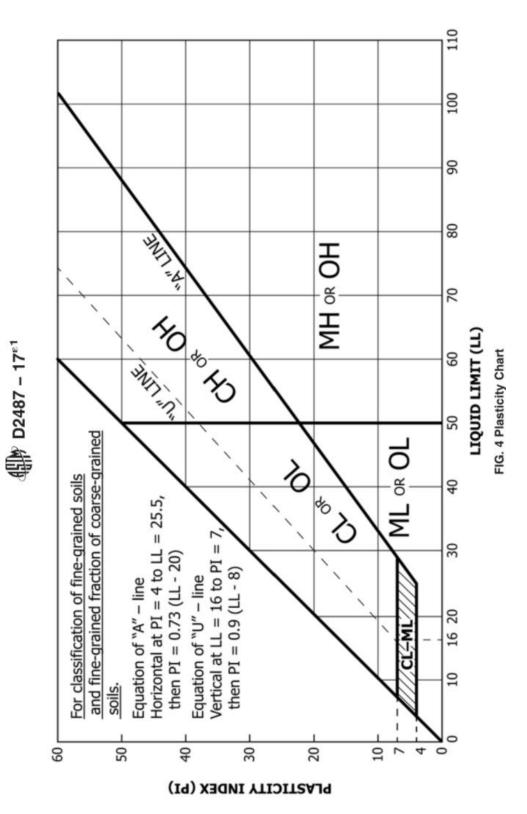

	Table 4.1 S	oil Comp	onents and Signific	ant Properties	
	Soil Component	Symbol	Grain Size Range and Description	Significant Properties	
	Boulder	None	Rounded to angular, bulky, hard, rock particle, average dia. Smaller than 300 mm /12 in.)	Boulders and cobbles are very stable components, use for fills, ballast, and to stabilize slopes (riprap). Because of size and weight,	
	Cobble	None	Rounded to angular, bulky, hard, rock particle, average dia. Smaller than 300 mm (12 in.) but larger than 76 mm (3 in.)	their occurrence in natural deposits tends to improve the stability of foundation. Angularity of particles increase stability.	
Coarse Grained Components	Gravel	G	Round to angular, bulky, hard, rock particle, passing 76 mm (3 in.) sieve retained on 4.75 mm (#4) sieve	Gravel and sand have essentially the same engineering properties differing mainly in degree. The 4.75mm sieve is	
ed Con	Coarse		76 mm to 19 mm (3 in. To 0.75 in.)	arbitrary division and does not correspond to significant change in properties. They	
Graine	Fine		19 mm to 4.75 mm (0.75 to #4 Sieve)	are easy to compact, little affected by moisture, not	
Coarse	Sands	S	Rounded to angular, bulky, hard, rock particle, passing 4.75 mm (#4) sieve, retained on 0.075 mm 1#200) sieve	subject to frost action. Gravels are generally more pervious and stable, resistant to erosion and piping than are sands. The well- graded sands and gravels are generally less pervious and more stable than those which are poorly graded and uniform in	
	Coarse		4.75 mm to 2.0 mm (#4 to #10) Sieve		
	Medium		2.0 mm to 0.425 mm (#10 to #40) Sieve	gradation. Irregularity of particles increases the stability slightly. Finer,	
	Fine		0.425 mm to 0.075 mm (#40 to #200) Sieve	uniform sands approach the characteristics of silts, i.e. decreases in permeability and reduction in stability with increase in moisture.	

	Table 4.1 Sc	oil Comp	onents and Sign	ificant Properties
	Soil Component	Symbol	Grain Size Range and Description	Significant Properties
	Silt	М	Particles smaller than 0.075 mm (#200) sieve identified by behavior: that is, slightly or non- plastic regardless of moisture and exhibits little or no strength when air dried.	Silt is inherently unstable, particularly when moisture is increased, with a tendency to become quick when saturated. It is relatively impervious, difficult to compact highly susceptible to frost heave, easily erodible and subject to piping and boiling. Bulky grains reduce compressibility; flaky
Fine Grained Components	Clay	С	Particles smaller than 0.075 mm (#200) sieve identified by behavior: that is, it can be made to exhibit plastic properties within certain range of moisture and exhibits considerable strength when air dried.	grains, i.e., mica, atoms, increase compressibility, produce an 'elastic' silt. The distinguishing characteristic of clay is cohesion or cohesive strength, which increases with decreases in moisture. The permeability of clay is very low, it is difficult to compact when wet and impossible to drain by ordinary means, when compacted s resistant to erosion and piping, is not susceptible to frost heave, is subject to expansion and shrinkage with changes in moisture. The properties are influenced not only by size and shape, flat, plate-like particles, but also by their mineral composition, i.e., the type of clay mineral, and chemical environment or base exchange capacity. In general, the montmorillonite clay mineral has greatest illite and kaolinite the least adverse effect on the properties.

-	Table 4.1 So	il Comp	onents and Signif	icant Properties
	Soil Component	Symbol	Grain Size Range and Description	Significant Properties
Organic Matter	Organic Matter	Ο	Organic matter in various sizes and stages of decomposition	Organic matter present even in moderate amounts increases the compressibility and reduces the stability of the fine-grained components. It may decay causing voids or by chemical alteration change the properties of the soil, hence organic soils are not desirable for engineering uses.

General Classification 35% or Less Passing $75 \mum$ (No. 200)More Than 35% Passing $75 \mum$ (No. 200) $A-1$ $A-1$ $A-1$ $A-1$ $A-1$ $A-1$ A :Top Classification $A-1$ $A-1$ $A-1$ $A-1$ $A-1$ A :Top Classification $A-1$ $A-1$ $A-2$ $A-2-6$ $A-2-7$ $A-5$ $A-7-5$ A :Top Classification $A-1-b$ $A-1-b$ $A-2-6$ $A-2-6$ $A-2-7$ $A-5-6$ $A-7-5$ Sieve analysis, % passing: $2.00 mm (No. 10)$ $50 max$ $51 min$ $a-2-6$ $A-2-6$ $A-2-7$ $A-5-6$ $A-7-5$ Sieve analysis, % passing: $2.00 mm (No. 10)$ $50 max$ $51 min$ $a-2-6$ $A-2-6$ $A-2-7$ $A-5-6$ $A-7-5$ Sieve analysis, % passing: $2.00 mm (No. 200)$ $50 max$ $51 min$ $a-2-6$ $A-2-6$ $A-7-6$ $A-7-6$ $A25 \mum (No. 40)$ $50 max$ $50 max$ $51 min$ $a-2-6$ $A-2-6$ $A-2-6$ $A-7-6$ $A25 \mum (No. 40)$ $50 max$ $50 max$ $51 min$ $a-2-6$ $A-2-6$ $A-7-6$ $A25 \mum (No. 40)$ $50 max$ $50 max$ $51 min$ $a-2-6$ $A-2-6$ $A-7-6$ $A25 \mum (No. 40)$ $50 max$ $50 max$ $51 min$ $a-2-6$ $A-7-6$ $A-7-6$ $A25 \mum (No. 40)$ $a-2-6$ $A-2-6$ $A-2-6$ $A-7-6$ $A-7-6$ $A25 \mum (No. 40)$ $A-2-6$ $A-2-6$ $A-2-6$ $A-7-6$ $A-7-6$ $A25 \mum (No. 40)$ $A-2-6$ $A-2-6$ $A-2-6$ $A-2-6$ <		TJ	ABLE 2 CI	assificatio	n of Soils	and Soil	-Aggregat	TABLE 2 Classification of Soils and Soil-Aggregate Mixtures				
	General Classification			Gr 35 % or Less	anular Mate s Passing 7	erials 5 μm (No. 2	(00)		More Th	Silt-Clay an 35 % Pa	Silt-Clay Materials 35 % Passing 75 µn	ו (No. 200)
Group Classification A-1-a A-1-b A-3 A-2-5 A-2-6 A-2-7 A-4 A-5 A Sieve analysis, % passing: 50 max 51 min <			A-1				A-2					A-7
Sieve analysis, % passing: 50 max	Group Classification	A-1-a	A-1-b	_ A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-6	A-7-5, A-7-6
2.00 mm (No. 10) 50 max <	Sieve analysis, % passing:											
425 µm (No. 40) 30 max 50 max 51 min 36 min 36 min 36 min 36 36 min 36 min 36 36 min 36 min 36 min <td>2.00 mm (No. 10)</td> <td>50 max</td> <td>:</td>	2.00 mm (No. 10)	50 max	:	:	:	:	:	:	:	:	:	:
75 µm (No. 200) 15 max 25 max 35 max 35 max 35 max 35 max 36 min 36 m	425 µm (No. 40)	30 max	50 max	51 min	:	:	:	:	:	:	:	:
Characteristics of fraction passing 40 max 41 min	75 µm (No. 200)		25 max	10 max	35 max	35 max	35 max	35 max	36 min	36 min	36 min	36 min
425 µm (No. 40): 425 µm (No. 40): Liquid Limit 40 max 41 min 40 max 40 max <td< td=""><td>Characteristics of fraction passing</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Characteristics of fraction passing											
Liquid Limit 40 max 41 min 40 max 41 min 40 max 41 min	425 µm (No. 40):											
Plasticity Index 6 max N.P. 10 max 11 min 11 min 10 max	Liquid Limit	:		:	40 max	41 min	40 max	41 min	40 max	41 min	40 max	41 min
Usual types of significant Stone Fragments, Fine Sitty or Clayey Gravel and Sand Sitty Soils constituent materials Gravel and Sand Sand General rating as subgrade <u>Excellent to Good</u> <u>Excellent to Good</u> <u>Fair to A</u> Plasticity index of A-7-5 subgroup is equal to or less than <i>LL</i> minus 30. Plasticity index of A-7-6 subgroup is equal to or <i>State Hinhwav and Transportation Officials</i> .	Plasticity Index	6 max		N.P.	10 max	10 max	11 min	11 min	10 max	10 max	11 min	11 min ^A
constituent materials Gravel and Sand Sand General rating as subgrade Excellent to Good Fair to ^A Plasticity index of A-7-5 subgroup is equal to or less than <i>LL</i> minus 30. Plasticity index of A-7-6 subgroup is greater than <i>LL</i> minus 30 (see Fig.	Usual types of significant	Stone Fr	agments,	Fine	Silt	y or Clayey	Gravel and	Sand	Silty	/ Soils	Claye	Clayey Soils
General rating as subgrade Excellent to Good Fair to ^APlasticity index of A-7-5 subgroup is equal to or less than LL minus 30. Plasticity index of A-7-6 subgroup is greater than LL minus 30 (see Fig. Beninited with permission of American Association of State Hinhwav and Transportation Officials	constituent materials	Gravel ar	nd Sand	Sand								
^A Plasticity index of A-7-5 subgroup is equal to or less than LL minus 30. Plasticity index of A-7-6 subgroup is greater than LL minus 30 (see Fig. Banimed with nermission of American Association of State Hinhway and Transcontation Officials.	General rating as subgrade			Ê	cellent to G	poot				Fair	Fair to Poor	
reprinted that politication of stationary processing of a part of the stationary and a	^A Plasticity index of A-7-5 subgroup is Reprinted with permission of Americ	equal to or can Associ	r less than L ation of Stat	L minus 30. e Highway a	Plasticity ir and Transpo	Idex of A-7-	6 subgroup <i>ials</i> .	is greater th	an LL minu	is 30 (see F	-ig. 1).	


1-11

Sing Contraction Assigning Group Symbols and Group Names Using Laboratory Tests ¹ Some Contraction Yests ¹ Symbol COARSE-GRAINED Gravels Cut = 4.0 and more than 50 % Cut = 4.0 and more than 50 % Gravels Cut = 4.0 and/mor Gravels Grave						
ssigning Group Symbols and Group Names Using Laboratory Tests ⁴ Signing Group Symbols and Group Names Using Laboratory Tests ⁴ Gravels with Fines of coarse fraction retained of coarse fraction retained No. 4 sieve) Sands Clean Sands (50 % or more of coarse fraction passes fraction passes No. 4 sieve) Sands with Fines fraction passes fraction passes No. 4 sieve) Sands with Fines fraction passes No. 4 sieve) Sands with Fines fraction passes No. 4 sieve) No. 4 sieve) Sands with Fines fraction passes No. 4 sieve) Sands with Fines fraction passes fraction passes					Soil	Soil Classification
$ \begin{array}{c} \mbox{Gravels} & \mbox{Clean Gravels} & \mbox{Clean Gravels} & \mbox{Clean Gravels} & \mbox{Clean S0\% finesc} & \mbox{Clean S10\% finesc} & \mbox{Clean S20\% finesc} & Cla$	Criteria for A	ssigning Group Symbols an	d Group Names Using Lab	oratory Tests ^A	Group Symbol	Group Name ^B
of coarse fraction retained on Clock of or Cock of Or Cock of Or Cock More than 12 % fines ^C) More than 12 % fines ^C) Fines classify as ML or More than 12 % fines ^H) 50 % or more of coarse (Lean Sands 50 % or more of coarse fines classify as CL or Clock of Or Clo	COARSE-GRAINED SOILS	Gravels (More than 50 %	Clean Gravels (Less than 5 % fines ^C)	$Cu \ge 4.0 \text{ and}$ $1 \le Cc \le 3.0^{D}$	GW	Well-graded gravel ^E
No. 4 sieve) Gravels with Fines (More than 12 % fines) Fines classify as ML or CH Sands (More than 12 % fines) MH Sands Clean Sands Cu = 6.0 and CH Sands Clean Sands Cu = 6.0 and Cu = 6.0 and/or (50 % or more of coarse (Less than 5 % fines) 10 ≤ 6.0 and/or No. 4 sieve) Sands with Fines To e.6.0 and/or No. 4 sieve) Sands with Fines Fines classify as ML or No. 4 sieve) Sands with Fines Fines classify as ML or No. 4 sieve) Sands with Fines Fines classify as ML or No. 4 sieve) Sands with Fines Fines classify as ML or Silts and Clays inorganic PI > 7 and plots on or Liquid limit PI > 7 and plots on or above "A" lime" Liquid limit Diganic PI > 7 and plots on or Silts and Clays inorganic PI > 7 and plots on or Silts and Clays inorganic PI > 7 and plots on or Silts and Clays inorganic PI > 7 and plots on or Silts and Clays inorganic PI > 7 and plots on or Silts and Clays inorganic PI > 7 and plots on or Silts and Clays inorganic PI > 7 and plots on or Silts and Clays inor <t< td=""><td></td><td>of coarse fraction retained on</td><td></td><td>Cu < 4.0 and/or [Cc < 1 or Cc > 3.0]^D</td><td>GP</td><td>Poorly graded gravel^E</td></t<>		of coarse fraction retained on		Cu < 4.0 and/or [Cc < 1 or Cc > 3.0] ^D	GP	Poorly graded gravel ^E
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		No. 4 sieve)	Gravels with Fines (More than 12% fines ^C)	Fines classify as ML or MH	GM	Silty gravel ^{E,F,G}
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	More than 50 %			Fines classify as CL or CH	gC	Clayey gravel ^{E,F,G}
fraction passes Cu < 6.0 and/or No. 4 sieve) Cu < 6.0 and/or	retained on No. 200 sieve	Sands (50 % or	Clean Sands (Less than 5 % fines ^H)	$Cu \ge 6.0 \text{ and}$ $1.0 \le Cc \le 3.0^{D}$	SW	Well-graded sand'
Sands with Fines Fines classify as ML or (More than 12 % fines'/ (More than 12 % fines'/ Silts and Clays MH Silts and Clays inorganic Liquid limit PI > 7 and plots on or above "A" line'/ Ine' Liquid limit PI > 7 and plots on or above "A" line'/ Ine' Silts and Clays organic Silts and Clays Inorganic Silts and Clays Inorganic PI of plots on or above "A" Ine Liquid limit So or more PI plots on or above "A" So or more Organic PI of plots below "A" PI plots on or above "A"		fraction passes No. 4 sieve)		Cu < 6.0 and/or [Cc < 1.0 or Cc > 3.0] ^D	SP	Poorly graded sand [/]
Fines classify as CL or CH Silts and Clays inorganic PI > 7 and plots on or above *A" line" Liquid limit PI < 4 or plots below "A" ind" PI < 4 or plots below "A" ind" Silts and Clays organic PI plots on or above "A" ind" Silts and Clays inorganic PI plots on or above "A" ind Silts and Clays organic PI plots on or above "A" ind Liquid limit PI plots on or above "A" line So or more Organic PI plots on or above "A" line So or more Organic PI plots on or above "A" line For more Indue limit - not dried 0.75 For more Dignal limit - not dried 0.75			Sands with Fines (More than 12 % fines ^H)	Fines classify as ML or MH	SM	Silty sand ^{F.G.I}
Silts and Clays inorganic P1 > 7 and plots on or above "A" line" Liquid limit P1 < 4 or plots below "A" ine" Diracion Diracion Silts and Clays inorganic Silts and Clays inorganic P1 plots on or above "A" line Corganic P1 plots on or above "A" line Liquid limit Diracion So more Organic Diracion P1 plots on or above "A" line So more Organic Final Diracion So more Diracion Final Organic Final Diracion Final Diracion Final Organic Final Diracion Final Diracion Final Diracion Final Diracion Final Diracion Final Diracion Final Organic Final Organic Final Diracion				Fines classify as CL or CH	SC	Clayey sand ^{F,G,I}
Liquid limit PI < 4 or plots below "A" line."	FINE-GRAINED SOILS	Silts and Clays	inorganic	PI > 7 and plots on or above "A" line ^J	CL	Lean clay ^{K,L,M}
Organic Liquid limit - not dried <0.75 Silts and Clays inorganic Pl plots on or above "A" Liquid limit Pl plots on or above "A" Liquid limit Pl plots on or above "A" 50 or more Organic Liquid limit - oven dread organic Liquid limit - oven dread <0.75		Liquid limit less than 50		PI < 4 or plots below "A" line'	ML	Silt ^{K, ,L,M}
Silts and Clays inorganic PI plots on or above "A" Liquid limit Inne 50 or more Digual limit - oven dread organic Liquid limit - oven dread Primarily organic matter, dark in color, and organic odor	50 % or more		organic		OL	<u>Organic clay^{K,L,M,N} Organic silt^{K,L,M,O}</u>
Liquid limit 50 or more organic Liquid limit - oven dread Uquid limit - not dread > 0.75 Primarily organic matter, dark in color, and organic odor	passes the No. 200 sieve	Silts and Clays	inorganic	PI plots on or above "A" line	сн	Fat clay ^{K, I, M}
Organic Liquid limit - over dred 0.75 Liquid limit - not dried Primarily organic matter, dark in color, and organic odor		Liquid limit 50 or more		PI plots below "A" line	HM	Elastic silt ^{K,L,M}
Primarily organic matter, dark in color, and organic odor			organic	Liquid limit - oven dried < 0.75	Ю	Organic clay ^{K,L,M,P} Organic silt ^{K,L,M,O⁻}
	HIGHLY ORGANIC SOILS		nic matter, dark in color, an	id organic odor	РТ	Peat

TABLE 1 Soil Classification Chart

1-14

0040				_E 4.4			OTEMO
SOIL GROUP	COMPAF	RABLE SOIL	GROUPS	SOIL	COMPAR	ATION SY ABLE SOIL	GROUPS
IN AASHTO SYSTEM	MOST LIKELY	POSSIBLE	POSSIBLE BUT NOT LIKELY	GROUP IN USES SYSTEM	MOST LIKELY	POSSIBLE	POSSIBLE BUT NOT LIKELY
A-1-a	GW,GP	SW,SP	GM,SM	GW	A-1-a		A-2-4 A-2-5 A-2-6 A-2-7
A-1-b	SW,SP GM,SM	GP		GP	A-1-a	A-1-b	A-3, A-2-4 A-2-5 A-2-6 A-2-7
A-3	SP		SW, GP	GM	A-1-b A-2-4 A-2-5 A-2-7	A-2-6	A-4, A-1-a A-5, A-7-5 A-6, A-7-6
A-2-4	GM,SM	GC,SC	GW,GP SW,SP	GC	A-2-6 A-2-7	A-2-4 A-6	A-4 A-7-5 A-7-6
A-2-5	GM,SM		GW,GP SW,SP	SW	A-1-b	A-1-a	A-3, A-2-4 A-2-5 A-2-6 A-2-7
A-2-6	GC,SC	GM,SM	GW,GP SW,SP	SP	A-3 A-1-b	A-1-a	A-2-4 A-2-5 A-2-6 A-2-7
A-2-7	GM,GC SM,SC		GW,GP SW, SP	SM	A-1-b A-2-4 A-2-5 A-2-7	A-4 A-5 A-2-6	A-6 A-1-a A-7-5 A-7-6
A-4	ML, OL	CL,SM SC	GM,GC	SC	A-2-6 A-2-7	A-4 A-6 A-2-4 A-7-6	A-7-5
A-5	OH,MH ML,OL		SM,GM	ML	A-4 A-5	A-6 A-7-5	
A-6	CL	ML, OL SC	GC,GM SM	CL	A-6 A-7-6	A-4	
A-7-5	ОН,МН	ML, OL CH	GM,SM GC,SC	OL	A-4 A-5	A-6 A-7-5 A-7-6	
A-7-6	CH,CL	ML, OL SC	OH, MH GC,GM SM	МН	A-5 A-7-5		A-7-6
				СН	A-7-6	A-7-5	
				ОН	A-5 A-7-5		A-7-6
				PT			

COMPACTION CONTROL

Compaction is more than just operating a piece of equipment. There is a tendency to assume that, as long as compaction equipment is being used, the necessary degree of compaction is being achieved. This is quite often the case with embankment materials, especially materials that are not tested. Uniform compaction is just as important as adequate compaction. The operator should develop a roller pattern so that all of the material in a lift receives the same compactive effort.

The reaction of the compaction equipment to changes in the material can aid the roller operator. For example, when compacting cohesive soils with a tamping foot roller, the feet will initially sink into the material. As the material is compacted, the feet will sink in less (walk out) and continue until there are very small feet impressions. The roller operator should observe the effects and incorporate the observations in his/her rolling technique.

The equipment must be operated properly. Roller speed is particularly important with vibratory rollers. If the roller speed is too fast, the vibrations are too far apart to effectively compact. A granular material, such as a base, should be seated with one or two initial passes with the vibrator off to avoid displacing the material.

The entire lift should receive the same number of roller passes. Compaction problems occur when there is more than one type of material in the same lift. The materials may require different compactive efforts. Some materials may be over compacted while others may be under compacted.

For a base material, a gradation requirement is generally specified. Once the material is compacted to the point that the maximum density has been achieved, further compaction may start to break down the particles and the gradation will no longer be according to specifications. On the other hand, materials such as shales often break down to a soil material when exposed to air and water. Breaking these materials down during construction prevents excessive consolidation.

LIFT THICKNESS

The lift thickness depends on the type of material and particle size. Materials must be placed in lifts thin enough to ensure that adequate compaction can be achieved. Soils and aggregates are generally placed in thin lifts, from say 4 to 8 inches, while bedrock materials are placed in thicker lifts depending on the size of the particles and material type. Compaction testing is generally restricted to the finer materials (soils and aggregates). The lift thickness should be uniform throughout the lift. If the lift thickness is variable, some material may be under compacted and some over compacted.

Embankment lift thicknesses are often difficult to control. Lift thickness should be controlled by the dominant particle size rather than the largest pieces. For example, when a small quantity of large durable pieces are mixed with fine material (soil), the roller rides on top of the large pieces, especially when drum rollers are used, and the soil between the large pieces is not compacted. The large pieces should be removed or isolated during the excavation to prevent this problem.

MOISTURE

The moisture content is a critical component of the compaction process. Moisture provides a lubricant so that the particles can move and fill void spaces. The moisture content is critical especially for cohesive soils. The ideal moisture content for a particular soil is referred to as the optimum moisture. The optimum moisture is the moisture content at which a material will compact to the maximum density for the given compactive effort. Remember that the optimum moisture and maximum density depend on the applied force. As the compactive effort increases the maximum density increases and the optimum moisture decreases. The opposite occurs when the applied force decreases; the maximum density decreases, and the optimum moisture increases. This is why different maximum densities and optimum moistures are obtained between AASHTO T 99 and AASHTO T 180. These methods have proven to be adequate for highway construction and provide the necessary standards on which to base acceptance decisions.

The field moisture can be determined with the nuclear density-moisture gauge, stove drying or speedy moisture. The nuclear gauge is generally the primary method with the speedy moisture or stove drying as the secondary methods. A nuclear gauge measures the moisture content based on the presence of hydrogen. Soils with organic materials or hydrogen rich minerals (i.e., hydrogen that is not attributed to water), will affect the accuracy of the moisture reading. Stove drying or speedy moisture tests are more appropriate in this case.

Specifications for a project usually indicate an allowable range that the moisture content of the soils can vary from the optimum moisture. The ranges are generally within plus or minus four percentage points from the optimum moisture content. Base course material may or may not have a moisture tolerance.

DENSITY

AASHTO T 99 and AASHTO T 180 have been the standards for determining the maximum dry densities and optimum moistures for soils and aggregates. Roller pass test sections are also used to determine the maximum dry densities in the field. This involves compacting a material with a specified piece(s) of compaction equipment until the material no longer appreciably increases in density. From the test section a roller pattern can also be developed which determines the number of roller passes with a specific roller(s) necessary to achieve the desired degree of compaction.

Compacting materials increases the internal strength and load bearing capacity. The particles are rearranged, and the volume is reduced. With sufficient compactive effort, the density increases to a point that no further compaction can occur unless either the particles are broken down or water is forced from the material. Further compaction, depending on the quality of the material, may cause the particles to start breaking down. For soils and aggregate bases, the maximum densities determined by either AASHTO T 99 or AASHTO T 180 are achieved before the zero air voids is reached. Materials, such as soft shales, will break down in the compaction process and the resulting soil like material is tested as soil.

A density curve, as determined by one of the methods in AASHTO T 99 or AASHTO T 180, provides the maximum dry density and optimum moisture for a particular soil at a designated compactive effort. Soil samples can be obtained for the various soils on a project and density curves developed. When compaction tests are performed, the maximum density and optimum moisture for the soil being tested can be used to evaluate the test. Representative soil samples from a large area can be tested (such as an entire state) and a family of curves can be developed. The appropriate curve from the family of curves can be selected by performing a one-point proctor with the soil being tested. The density and moisture content of the one-point proctor is used to select the correct curve and the subsequent maximum dry density and optimum moisture for the soil.

Specifications for a project state the degree of compaction required for the different materials. For density there is a specified percentage of theoretical maximum dry density to which materials must be compacted. The percentage varies; however, 95% is a common value.

The field density can be determined by several methods such as the nuclear density gauge, sand cone, rubber balloon method, etc. The nuclear density gauge is the most common method. Some soils contain materials, for example mica, which affect the accuracy of the nuclear gauge. When these soils are encountered, other methods to determine the density are required.

COMPACTION TESTING

Testing is a verification process to determine if the desired degree of compaction has been achieved. Random selection of test sites reduces the influence of human bias. Test results and field observations can be used to make engineering decisions on the quality of the materials. A sound testing program provides necessary information to assure the final product will perform as intended.

STABILITY

Some materials compact to a very dense, high strength condition, while others are difficult to compact to a stable condition. Materials containing large quantities of silt and fine sand, for example, are very unstable under loading. Even though the materials can be placed and compacted to the desired degree, they are susceptible to rutting and shoving when loaded. When these materials are used, special construction precautions are required to limit loading until the materials are bridged by lifts of higher strength materials. This is also the case with some cohesive soils, which are weak and easily displaced under loading (pumping or rutting).

The performance of a roadway depends on drainage. Internal drainage, as well as surface drainage, is of utmost importance. The strength of the materials must be maintained after construction in order for the roadway to perform as intended. Free draining granular materials will not be appreciably affected by moisture. In comparison, an increase in the moisture content of cohesive soils results in swelling and the material becomes unstable as it loses shear strength. Provisions in the design for drainage layers to divert water away from the materials are essential. Construction personnel must watch for seepage areas, springs, etc. that were not addressed in the design.

Construction personnel should observe the reaction of materials to construction equipment. Areas which yield (pump) under the weight of construction equipment, need to be corrected. The method(s) of corrective action depends on the situation. Some of the possible corrective measures include removing the material and replacing with a suitable material, aerating the material to reduce the moisture content, bridging the area using a high strength material such as rock, stabilizing the material with lime or cement, etc.

COMPACTION CHARACTERISTICS OF SOILS AND AGGREGATES

No one method of compaction is equally suitable for all types of soil. The following review of methods for compacting fills are divided into three groups: those suitable for cohesionless soils, those for sandy or silty soils with moderate cohesion, and those for clays. Many different compaction methods are used, each with its own benefits and limitations that must be understood to be employed effectively. Compaction problems are often the result of the use of improper compaction equipment or its improper application.

For greatest efficiency the applied compactive force must be high enough, and of sufficient duration, to rearrange the particles. However, this effort must not be so high as to cause shearing of the compacted mass. A cohesionless materials strength is affected by confinement. This is most easily accomplished by wide area of load application. In cohesive materials, the strength is affected by void ratio and moisture, and less dependent on confinement.

In cohesionless materials efficient compaction results are obtained with moderate force applied to a wide area while using vibration. In cohesive materials efficient compaction requires higher pressure for dry versus wet material, with a smaller loaded area preferable.

Along with the following discussion, Tables 4.5 and 4.6 provide basic guidance concerning various compaction methods, equipment, applicable materials, and conditions.

COMPACTION OF COHESIONLESS MATERIALS

For granular materials such as sand and gravel, the best results are achieved by use of vibratory compaction equipment (vibratory rollers). Ideally, equipment should vibrate at a frequency close to the resonant frequency of the material. When this is conducted properly, void reduction can be 20 to 40 times greater than that produced by an equivalent static load. Rock fills can also be compacted effectively using vibratory equipment.

The maximum size of particles is controlled by the thickness of compacted layers. Two to four passes of vibratory rollers, moving at a speed up to 1.5 mph, are usually sufficient to achieve the desired level of compaction. Moisture control may not be necessary for granular materials due to their high permeability. Granular materials can also be compacted by use of pneumatic-tired rollers pulled by heavy track- mounted equipment. Vibrations induced by the tracked equipment work in conjunction with the static pneumatic tired rollers. Six to eight passes of such equipment are typically required to attain a satisfactory degree of compaction. Water may be added to the material to facilitate the compaction process by temporarily "lubricating" the granular material (i.e., temporarily reducing inter-particle friction).

In confined areas the use of small self-propelled, hand-operated vibratory compactors is often necessary. The weight of these compactors varies from several hundred to several thousand pounds. The vibrating force is delivered to the material with a flat plate or roller. Four-to-eight-inch layers can be effectively compacted.

The use of static rollers to compact cohesionless granular materials is inefficient and generally ineffective. A high degree of saturation is necessary to achieve acceptable results.

COMPACTION OF SANDY OR SILTY MATERIALS WITH MODERATE COHESION

As cohesion (and plasticity) of a material increases, the compacting effect of vibrations decreases greatly. Even a slight bond between particles interferes with their tendency to move into a more stable position. The lower permeability of these materials results in the development of excess pore water pressures. Use of vibratory equipment often results in shear failure of the material rather than densification. Compaction in layers by static rollers usually provides satisfactory results.

Two types of rollers are effective with materials of this type: pneumatic-tired (rubber - tired) rollers and sheepsfoot or padfoot rollers. Pneumatic-tired rollers are most effective for compacting slightly cohesive sandy materials, mixed-grained materials ranging from gravels to silts and clays, and non-plastic silty materials (clean silts). Sheepsfoot rollers are most effective for compaction of cohesive, plastic materials.

Pneumatic-tired rollers usually consist of a cart or bin loaded with ballast, supported on a single row of four or more wheels. Tires are inflated at pressures ranging from 50 to 125 psi. The wheels have independent suspensions so that the weight is transmitted roughly equal to all wheels, even over non-uniform ground surfaces. Embankment materials are compacted in lifts or layers of six to twelve inches (when loose), using high tire pressures, and heavy loads (30 to 50 tons). Four to eight passes generally achieve the required level of compaction.

The surface of sheepsfoot rollers are usually covered with slightly rounded pads or feet. The size, shape and arrangement of the pads can vary greatly, with a typical arrangement of approximately one pad for every 100 in.2 of roller surface area. The feet extend distances typically in the range of four to eight inches from the drum, with surface areas ranging from approximately 5 to 14 in.2 Depending on the size and arrangement of the feet, contact pressures typically vary from 300 to 600 psi. Material lifts are generally thin, not exceeding six inches when compacted.

Regardless of the type of compaction equipment and the degree of cohesion and plasticity, the efficiency and effectiveness of the compaction procedure depends largely on the moisture content of the material - especially for low to non-plastic uniform fine

grained materials. If the moisture content during compaction is not almost exactly equal to the optimum moisture content (for the specific level of compactive effort), these materials cannot be compacted to a stable condition.

If an embankment is constructed using uniform material under carefully controlled conditions (layer thickness, type of compaction equipment, and number of passes kept constant), the effectiveness of compaction depends only on the moisture content of the material at the time of compaction. If all conditions remain the same except a lighter roller is used for compaction, the value of the maximum dry density is lower, and the optimum moisture content is higher (see Figure 5.14). Similar changes in the moisture-density relation for a given material will occur with variations in layer or lift thickness, type and/or weight of compaction equipment, roller speed, and rate of energy application. Therefore, the values of maximum dry density and optimum moisture content for a given material, will be specific with a given compaction procedure.

The water content at which a material is compacted affects the resulting density, strength, stability, and permeability. An increase in initial water content from a value below optimum moisture to a value above optimum moisture, generally accompanies a large decrease in the material's permeability. The decrease generally is larger with increasing clay content.

COMPACTION OF CLAY

If the natural water content (natural moisture content) of a clay is not near the optimum moisture content, it may be difficult to change the moisture, especially if the water content is too high. When clay is excavated, it is generally removed in solid blocks or chunks. An individual block of clay cannot be compacted by any of the conventional compaction procedures previously discussed. Neither vibration nor short duration pressures results in significant change in water content. Use of a sheepsfoot roller can be effective in reducing open spaces between clay chunks. Results are best if the moisture content is slightly greater than the plastic limit of the material.

If the moisture content is too high, the clay tends to stick to the roller, or the roller starts rutting or sinking into the surface. If the moisture content is considerably less than optimum, the chunks are too stiff and do not yield, with the spaces between clay blocks not effectively closed.

	Table 4.5 Co	Compaction	n Equipmen	mpaction Equipment and Methods (Navdocks DM-7)	
		Requirem	ent for Compa Proctor	Requirement for Compaction of 95 to 100 Percent Standard Proctor Maximum Density	
Equipment Type	Applicability	Compacted Lift Thickness, /inches)	Passes or Coverages	Dimensions and Weight of Equipment	Possible Variations in Equipment
Sheepsfoot roller	For fine-grained soils or dirty coarse-grained soils with more than 20 percent assign the No. 200 sieve. Not suitable for clean coarse-grained soils. Particularly appropriate for compaction of impervious zone for earth dam or linings where bonding of lifts is important	۵	4 to 6 passes for fine-grained soil; 6 to 8 passes for coarse- grained soil	Foot foot foot contact contact serea pressures, in ² psi fine-grained 5 lo 12 250 to 500 soil Pl <30 7 to 14 200 to 400 soil Pl <30 10 to 14 150 to 250 soil Pl <30 10 to 14 150 to 250 soil Pl <30 10 to 14 150 to 250 soil ent compaction of soils wet of optimum requires less contact pressures than the same soils at lower moisture contents	For earth dam. highway and airfield work, drum of 60-in dia., loaded to u.5 to 3 tons per lineal foot of drum is generally utilized. For smaller projects 40-in dia. Drum, loaded to .75 to 1.75 tons per lineal foot of drum is used. Foot contact pressure should be regulated to avoid shearing the soil on the third or fourthpass.
Rubber lire rollers	For clean, coarse-grained soils with 4 to 8 percent passing the No. 200 sieve For fine-grained soils or well- graded, dirty coarse-grained soils with more than 8 percent passing	10 6 to 8	3 to 5 coverages 4 to 6	Tire inflation pressures of 60 to 80 psi for clean granular material or base course and subgrade compaction. Wheel load 18 000 to 25 000 lb Tire inflation pressure in excess of 65 psi for fine-grained soils of high plasticity. For uniform clean sands or silty fine sands, use large size	Wide variety of rubber tire compaction equipment is available. For cohesive solis, light wheel loads, such as provided by wobble-wheel equipment, may be substituted for heavy-wheel load if lift thickness Is decreased. For othesionless solis,
Smooth wheel rollers	the No. 200 sieve Appropriate for subgrade or base course compaction of well-graded sand-gravel mixtures May be used for fine-grained soils other than in earth dams. Not suitable for clean well-graded sands or silty uniform sands	8 to 12 6 to 8	coverages 4 coverages 6 coverages	tires with pressures of 40 to 50 psi Tandem type roller for base course or subgrade compaction, 10-to-15-ton weight, 300 to 500 lb per lineal inch of width of rear roller 3-Wheel roller for compaction of fine-grained soil; weights from 5 to 6 tons for materials of low plasticity to 10 tons for materials of high plasticity	arge-size tries are desirable to avoid shear and rutting. 3-Wheel rollers obtainable in wide range of sizes. 2-Wheel tandem rollers are available in the range of 1- tatoweight. 3-Axle tandem rollers are generally used in the range of 10-to-20-ton weight. Very heavy rollers are used for proof rolling of subgrade or base course.

	Table 4.5 Compact	action Equip	oment and	ion Equipment and Methods - continued (Navdocks DM-7)	; DM-7)
		Requirem	ent for Compa Procto	Requirement for Compaction of 95 to 100 Percent Standard Proctor Maximum Density	
Equipment Type	Applicability	Compacted Lift Thickness, (inches)	Passes or Coverages	Dimensions and Weight of Equipment	Possible Variations in Equipment
Vibrating baseplate compactors	For coarse-grained soils with less than about 12 percent passing No. 200 sieve. Best suited for materials with 4 to 8 percent passing No. 200 placed thoroughly wet	8 lo 10	3 coverages	Single pads or plates should weigh no less than 200 lb. May be used in tandem where working space is available. For clean coarse-grained soil, vibration frequency should be no less than 1600 cycles per minute	Vibrating pads or plates are available, hand-propelled of self- propelled, single or in gangs, with width of coverage from 1 $\frac{1}{2}$ to 15 ft. Various types of vibrating-drum equipment should be considered for compaction in large areas.
Crawler tractor	Best suited for coarse-grained soils with less than 4 to 8 percent passing No. 200 sieve, placed thoroughly wet	10 to 12	3 lo4 coverages	No smaller than DB tractor with blade, 34 500 lb weight, for high compaction	Tractor weights up to 60 000 lb.
Power tamper or rammer	For difficult access, trench backfill. Suitable for all inorganic soils	4 to 6 in for silt or clay, 6 in for coarse- grained soils	2 coverages	30-lb minimum weight. Considerable range is tolerable, depending on materials and conditions	Weights up to 250 lb: for diameter 4 lo 10 in

Table	4.6 Compaction Equipr	nent for Different Cond	itions
Soil	First choice	Second choice	Comment
Rock fill	Vibratory	Pneumatic	
Plastic soils, CH,MH	Sheepsfoot or padfoot	Pneumatic	Thin lifts usually needed
Low-plasticitysoils, CL, ML	Sheepsfoot or padfoot	Pneumatic, vibratory	Moisture control often critical for silty soils
Plastic sands and gravels, GC, SC	Vibratory, pneumatic	Pad foot	
Silty sands and gravels, SM.GM	Vibratory	Pneumatic, padfoot	Moisture control often critical
Clean sands, SW,SP	Vibratory	Impact, pneumatic	
Clean gravels, GW,GP	Vibratory	Pneumatic, impact, arid	Grid useful for oversize particles

MP 700.00.24 CHAPTER 2

WEST VIRGINIA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING DIVISION

MATERIALS PROCEDURE

NUCLEAR DENSITY TEST BY THE ROLLER PASS METHOD

1. PURPOSE

1.1 The purpose of this procedure is to determine the density of construction materials by the roller pass method. The procedure consists of two parts, with Part I to determine the required maximum density and Part II to compare field densities to the required maximum density.

2. SCOPE

2.1 This test method or method of testing is applicable to aggregate base courses, select material for backfilling, crushed aggregate backfills, granular material, subgrade, and random material having 40% or more of +3/4-inch material as specified in MP 717.04.21.

3. REFERENCES

- 3.1 MP 712.21.26
- 3.2 MP 717.04.21

4. EQUIPMENT

- 4.1 One complete nuclear density gauge unit meeting the requirements specified in MP 717.04.21. This would include the manufacturer's printout of standard counts.
- 4.2 One measuring tape, approximately 50 feet.
- 4.3 Lime, chalk, lumber crayon, or other suitable material to mark test sites
- 4.4 Dry silica sand
- 4.5 Supply of data sheets
- 4.6 One vehicle meeting the safety and security requirements of the Nuclear Regulatory Commission for transporting nuclear density gauges.

5. PERSONNEL TRAINING

5.1 All personnel performing the testing must meet the minimum training requirements specified in MP 717.04.21.

5.2 All personnel must know and follow the requirements of the Nuclear Regulatory Commission.

6. ROUNDING OF DATA

- 6.1 Test values and calculations are to be rounded according to the following procedure:
- 6.1.1 If the figure following the last significant number to be retained is five or larger, increase the last significant number to be retained by one.
- 6.1.2 If the figure following the last significant number to be retained is less than five, the last significant number is left unchanged.
- 6.2 Test values and calculations shall be rounded to the following nearest significant digit:
- 6.2.1 Form $T-313^1$ (Test Section)

Lift Thickness Compacted	0.1 in.
Depth Below Grade	1 ft
Length of Test Section	1 ft
Width of Test Section	1 ft
Station Number	1 ft
Offset	1 ft
Dry Density (DA)	1 PCF
Average Density (DB)	1 PCF
Maximum Density (DC)	1 PCF

6.2.2 <u>Form T-317¹</u> (Quality Control Tests)

1 ft
1 ft
1 ft
0.1 in.
1 PCF
1 PCF
1%
0.1%
1%
0.01
1%
1%

7. **PREPARATION FOR TESTING**

7.1 Standardization of the Nuclear Gauge

¹ https://transportation.wv.gov/highways/mcst/Pages/tbox.aspx

- 7.1.1 Warm up the gauge according to the manufacturer's recommendations.
- 7.1.2 Standardization of the gauge must be performed away from metal and other objects.
- 7.1.3 Clean the top of the standard block and the bottom of the gauge with a cloth.
- 7.1.4 Standardize according to manufacturer's recommendations.
- 7.1.5 Compare the standard counts to the manufacturer's standard counts using tolerances acceptable to the Division. For the Troxler 3400 series gauge, the standard counts must be within $\pm 2\%$ for density and $\pm 4\%$ for moisture from the manufacturer's standards.
- 7.1.6 If the gauge is not within the specified tolerances for either moisture or density, repeat section 7.1.4 -7.1.5. If the gauge will not standardize for either moisture or density after 4 attempts, a different gauge shall be used. The gauge which failed to standardize may be used again in the future if the procedure referenced in Section 5.2.10 of MP 717.04.21 is followed and the gauge is found to be stable.
- 7.1.7 Gauges shall be standardized before testing and at least every four hours during testing.
- 7.1.8 When a gauge is to be used for testing pipe or structure backfill in a trench, first check the standardization of the gauge according to sections 7.1 7.1.5. If the gauge is functioning properly, standardize the gauge in the trench. The standard counts in the trench shall be used for testing in the trench only and the tolerances would not be applied to the standard counts taken in the trench. When the gauge is moved to a non-trench condition for testing, new standard counts shall be required.

8. PART I PROCEDURE FOR DETERMINING THE MAXIMUM DENSITY

- 8.1 All data and calculations for Part I of this procedure will be recorded on form T-313 (copy attached). Record the Contract ID, project number, lab number etc. before starting the test.
- 8.2 The test is to be performed at the beginning of placement of an item. However, any problems with the material, placement, or compaction equipment shall be corrected prior to performing the test.
- 8.3 The test section will be 100 feet long by the width being placed in one operation, except in restricted areas.
- 8.3.1 In restricted areas, where the 100-foot length cannot be obtained, check the project's records to determine if a maximum density for the material has been determined on the project. If the material, lift thickness, and compaction equipment remain unchanged, the existing maximum density shall be used for Part II of this procedure, if available. A maximum density determined in a restricted area shall not be used in a non-restricted area. If a maximum density is not available for the material, obtain the largest test section possible. For pipe backfill, a lift on both sides of the pipe can be used.

- 8.4 Divide the test section into 5 equal subsections and number the subsections. Randomly locate a test site within each of the subsections according to MP 712.21.26.
- 8.5 Water shall be added to untreated aggregates, if necessary, in a quantity satisfactory to the Engineer. The aggregate must visually appear wet to properly compact.
- 8.6 Once the material had been placed in the test section, the material shall be rolled with compaction equipment meeting the following requirements:
- 8.6.1 All compaction equipment must be in good working condition.
- 8.6.2 The materials shall be compacted with rollers providing a minimum applied force of 10 tons.
- 8.6.3 In restricted areas, inaccessible to conventional rollers, the compaction equipment must be satisfactory to the Engineer to provide the desired compactive effort. The Division may request verification that the above compaction equipment meets the specified requirements.
- 8.7 The test section shall be rolled with 12 roller passes. A roller pass is one complete coverage over the material. In restricted areas, where conventional rollers cannot be used, the material shall be compacted until it appears well densified or to the satisfaction of the Engineer.
- 8.8 If the material shears or breaks down during rolling, the number of roller passes may need to be reduced. The designated number of roller passes must not be changed without the approval of the Engineer.
- 8.9 Once the material has been rolled, testing will be performed on test sites 1 and 2.
- 8.10 Smooth and level the test site. Fill any voids with fines scraped from the surface, but no more than 1/8 inch.
- 8.10.1 Place the guide plate on the test site. Next place the drive rod in the guide plate and while standing on the plate, drive the rod at least two inches deeper than the location where the end of the gauge source rod will be when testing. The gauge source rod can be extended in two-inch (50 mm) increments. The source rod must be as deep as possible within the lift but must not extend beyond the lift. For example, a five-inch lift would be tested with the source rod in the four-inch position and the hole would be six inches deep. Carefully remove the drive rod to prevent material from falling into the hole.
- 8.10.2 Place the gauge over the test site and insert the source rod to the desired depth. Pull the gauge tight against the side of the hole toward the scaler. Make sure the gauge is sitting flush on the material. Mark the outline of the gauge with lime or other suitable material so the test sites can be relocated.
- 8.10.3 Take a one-minute density reading.

- 8.10.3.1 Record the dry density (DA) in Section A of form T-313. Perform the same testing on site 2.
- 8.11 Average the two dry densities (DA) obtained in section 8.10.3.1.
- 8.12 Roll the material in the test section two additional roller passes. In restricted areas, the compaction equipment would pass over the material the above indicated number of passes.
- 8.13 After the material has been rolled the additional number of passes, perform tests again on sites 1 and 2 according to sections 8.10 through 8.10.3 and record the values in section B.
- 8.14 Average the two densities according to section 8.11.
- 8.15 Compare the value in section 8.14 to the value obtained in section 8.11. If the increase in density is 1 PCF or less, the material is considered to have achieved its maximum density. If the increase in density is greater than 1 PCF, roll the material two additional passes according to section 8.12 and repeat the testing on sites 1 and 2. Continue the rolling and testing sequence until the increase in density between two consecutive rolling sequences is 1 PCF or less. The Division may direct the contractor to cease rolling even though the increase is more than 1 PCF if the material is breaking down.
- 8.16 Once the increase in density is 1 PCF or less, move the last two density readings to the maximum density determination section on form T-313. Take density measurements on sites 3, 4, and 5.
- 8.17 The average of the five density readings is the maximum density (DC) for this material.
- 8.17.1 The maximum density will be used to control the material for Part II of this procedure.
- 8.17.2 Division personnel may request that Part I be repeated if the test was not performed properly or the maximum density obtained does not appear to be realistic.

9. PART II QUALITY CONTROL TESTING

9.1 All test data and calculations for Part II of this procedure will be recorded on form T-317 (copy attached). Record the Contract ID, project number, item number, etc. on the form before starting the testing.

9.2 The lot number would have a prefix letter based on the following designations for the use of the material being tested:

Embankment:	F
Subgrade:	S
Base:	В
Pipe/Structure Backfill:	р

- 9.3 Transfer the maximum density (DC) and the lab number from form T-313 to form T-317. Record the lab number in the section for reference lab number.
- 9.4 Randomly locate the test site according to MP 712.21.26.
- 9.5 Determine the dry density (DE) with the nuclear gauge according to the procedure described in sections 8.10 through 8.10.3. The test sites do not have to be marked on the roadway.
- 9.6 Calculate the percent relative density (DF) by using the equation on form T-317.
- 9.7 Perform the remaining four tests in the lot. Five tests are always required to evaluate a lot.
- 9.8 Calculate the average relative density (*X*) for the five tests in the lot.
- 9.9 Obtain the target percentage of dry density (T) from the project's governing specifications.
- 9.10 Determine the range (R) of the relative densities (DF) by subtracting the smallest value from the largest.
- 9.11 Calculate the quality index (QL) by using the equation on form T-317.
- 9.12 Use the Table for Estimating the Percent of a Lot Within Tolerance (copy attached) and determine the percent within tolerance (DG) that corresponds to the QL value calculated in section 9.11 above.
- 9.13 Obtain the minimum percent for 100% pay (DH) from the project's governing specifications.
- 9.14 For a lot to meet specifications, the percent within tolerance (DG) must be equal to or greater than the minimum percent for 100% pay (DH).

10. GENERAL

- 10.1 Independent tests for similarity checks can be recorded on form T-317. Use only the applicable sections of the form.
- 10.2 If the material changes or the material is supplied from a new source, repeat Part I to obtain new control data.

MP 700.00.24 MAY 31, 2023 PAGE 7 OF 7

- 10.3 If the percent relative densities are consistently above 105 percent or below 95 percent, and there is no apparent cause for the high or low values, repeat Part I to obtain new control data.
- 10.4 Test data for several lots can be recorded on form T-317.

05/31/2023

Ronald L. Stanevich, PE Director Materials Control, Soils & Testing Division

MP 700.00.24 Steward – Aggregate and Soils Section RLS:R

ATTACHMENTS

MP 700.00.24 - ATTACHMENT MAY 31, 2023 PAGE 1 OF 3

Percent Within Tolerance	Quality Index (QL) Negative Values	Percent Within Tolerance		
		50		
		49		
		48		
		47		
		46		
		45		
and the second sec		44		
		43		
		42		
		41		
		40		
		39		
		38		
		37		
		36		
84		35		
		34		
		33		
The second s		32		
		31		
		30		
		29		
		28		
		27		
		26		
		25		
		24		
		23		
		22		
		21		
		20		
		19		
		18		
		17		
		16		
		15		
		14		
		13		
		12		
60		11		
		10		
	.51	9		
57	.53	8		
56	.55	7		
55		6		
54	.58	5		
53		4		
		4 3 2		
51	.63	2		
	99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		

TABLE FOR ESTIMATING PERCENT OF LOT WITHIN TOLERANCE

MP 700.00.24 - ATTACHMENT MAY 31, 2023 PAGE 2 OF 3

							vision of Higl and Testing				WVDOH
Lab Nur											Factor In
Auth. Nu										FORM T-	313
Project Number						MP 700.00.24					
District I	Number									REV. 09-	22
Item Nu	mber										
Date				-	Co	ntract ID					
Source	of Mate	rial:					Length of	f Test \$	Section:		
Roller T	ype:						Width of	Test S	ection:		
Roller W	Veight	Static:			Working:		Gauge N	umber			
Lift Thic	kness C	Compacted:							Manufacturer's	Standard	s
Depth B	elow Gr	rade:					Density:			Moisture:	
		e Source:							Standard	Counts	
Observe		Yes	No				Density:			Moisture:	
		Test Site Nur	nber		1	2	3		4	5	
		Station Numb	ber								
		Offset									
_											
[Α	Number of F	Passes					в	Number of	Passes	
[Test Site	DA	Dry [Density				Test Site	DA	Dry Density
		1							1		
		2							2		
	DB	Average						DB	Average		
[С	Number of F	Passes					D	Number of	Passes	
		Test Site	DA	Dry [Density				Test Site	DA	Dry Density
		1							1		
		2							2		
F	DB	Average						DB	Average		
	DB :	=∑DA/2									
									Maximum Den	sity Deterr	nination
L	DC :	=∑DA/5							Test Site	DA	Dry Density
-			-						1		
									2		
1	Inspecto	or's Name:							3		
1	Inspecto	or's Signature:							4		
	-	-		rojecť	s Evaluatio	n	-		5		
		Checked By:						DC	Max. Density		

 $^{^{2}\} https://transportation.wv.gov/highways/mcst/Pages/tbox.aspx$

WEST VIRGINIA DIVISION OF HIGHWAYS

LAB NUMBER AUTH NUMBER PROJECT NUMBER DISTRICT ITEM NUMBER CONTRACT ID	MATERIALS CONTROL, SOILS & TESTING DIVISION								
GAUGE #	DATE								
MANUFACTURER'S	LOT NUMBER								
DENSITY STANDARD	BEGINNING STATION								
	ENDING STATION								
MANUFACTURER'S	OFFSET								
MOISTURE STANDARD	DEPTH BELOW GRADE								
	DEPTH OF GAUGE SOURCE								
	LIFT THICKNESS COMPACTED								
DC FROM TEST SECTION	DENSITY STANDARD								
	MOISTURE STANDARD								
DF = <u>DE (100)</u> DC									
$\overline{\mathbf{x}} = \underline{\sum DF}$	DC MAXIMUM DENSITY REFRENCE LAB NUMBER								
QL = <u>x - T</u>	REFRENCE LAB NUMBER								
R									
	DE DRY DENSITY								
TEST NUMBER 1	DF % RELATIVE DENSITY								
	DE DRY DENSITY								
TEST NUMBER 2	DF % RELATIVE DENSITY								
	DE DRY DENSITY	I							
TEST NUMBER 3	DF % RELATIVE DENSITY					<u> </u>			
TEST NUMBER 4	DE DRY DENSITY					<u> </u>			
	DF % RELATIVE DENSITY								
TEST NUMBER 5	DE DRY DENSITY					L			
*	DF % RELATIVE DENSITY								
	X AVERAGE DF								
	T TARGET	95%	95%	95%	95%	95%			
LOT EVALUATION	QL QUALITY INDEX								
	DG % WITHIN TOLERANCE								
	DH MIN. FOR 100% PAY	80%	80%	80%	80%	80%			
	DI PASS / FAIL								

INSPECTOR'S NAME:

INSPECTOR'S SIGNATURE: PROJECT'S EVALUATION

CHECKED BY: DATE:

³ https://transportation.wv.gov/highways/mcst/Pages/tbox.aspx

MP 712.21.26 CHAPTER 3

MP 712.21.26 Issued: January 1972 Reissued: October 1999 Page 1 of 5

WEST VIRGINIA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS CONTRACT ADMINISTRATION DIVISION

MATERIALS PROCEDURE

Procedure For Determining The Random Location Of Compaction Tests

- 1.0 Purpose
- 1.1 This procedure provides methods for determining the random locations for compaction tests.
- 2.0 Scope
- 2.1 This procedure is applicable for locating all compaction tests.
- 3.0 Equipment
- 3.1 Measuring tape, approximately 50 feet (15 m)
- 4.0 Procedure
- 4.1 Compaction test site locations are to be randomly located along the roadway centerline (length) and offset (width) randomly from this reference line. Some test site locations, such as pipe backfill, require random selection of lifts for the tests and a random determination of the side of the pipe backfill to test.
- 4.2 Selection of random numbers
- 4.2.1 Determine the number of test sites which will be required for the lot or test section.

MP 712.21.26 Issued: January 1972 Reissued: October 1999 Page 2 of 5

- 4.2.2 The table of random numbers (Table I attached) or a calculator, which will generate random numbers, can be used.
- 4.2.3 The table of random numbers contains 5 sections with 2 columns of numbers in each section.
- 4.2.3.1 The first column of numbers in each section is for determining the test site along the centerline. The second column of numbers is for determining the distance from the centerline (offset). Either column of numbers can be used for selecting lifts to be tested.
- 4.2.3.2 To use the table, select a random point on the table by tossing a pencil upon the page or blindly pointing out a location with the finger. The selection of random numbers will consist of a pair of random numbers. Once the point is located, select the number in the first column for the length and the corresponding number in the right column for the width. When more than one pair of random numbers is needed, continue selecting the pairs of numbers down the page. If the bottom of the page is reached, go to the top of the next section to the right or to the top of the first section on the left side of the page if the bottom of the right most section of the page is reached. When selecting lifts to be tested, only single random numbers are needed and can be obtained from any of the columns of numbers.
- 4.2.3.3 To use a calculator, which will generate random numbers, select all numbers needed for a test site before selecting numbers for additional test sites.
- 4.3 Location of test sites
- 4.3.1 There are many variations in the required number of tests and the physical dimensions of the area to be tested.
- 4.3.2 Random location of tests on a single lift that is rectangular in shape (Example 1 attached)

MP 712.21.26 Issued: January 1972 Reissued: October 1999 Page 3 of 5

- 4.3.2.1 Generally the Materials Procedure used for testing a material and/or Specifications requires a lot, portion of a lot, or a test section to determine the maximum density of a material to be divided into equal sublots or subsections when more than one test is required.
- 4.3.2.2 Divide the length of the area along the centerline by the number of tests to determine the length of each sublot or subsection.
- 4.3.2.3 From the beginning station number, add the length of the subsection or sublot to the station number to determine the station number for the beginning of the next sublot or subsection. Next add the length of the subsection or sublot to this station number to determine the station number at the beginning of the next subsection or sublot. Continue this procedure until the beginning station numbers for all subsections or sublots have been calculated.
- 4.3.2.4 Select the random numbers according to 4.2 through 4.2.3.3.
- 4.3.2.5 Multiply the length of the subsections or sublots by the random numbers selected for the length.
- 4.3.2.6 Add the values to the corresponding station numbers for the beginning of each subsection or sublot. The station numbers locate the test sites along centerline.
- 4.3.2.7 Next multiply the width of the test section or lot by the random numbers selected for the offset.
- 4.3.2.8 Determine the offset distance of the lot or test section from the centerline when the centerline is not within the area to be tested. This will usually be a constant value. Always calculate the offset by working from the side nearest the centerline. Add each of the values calculated in 4.4.2.7 to the constant value. The values establish the offset distance of each test site from the centerline. Designate rather the offset is left or right of centerline.

MP 712.21.26 Issued: January 1972 Reissued: October 1999 Page 4 of 5

When the centerline is contained within the area to be tested, the offset can be calculated from the left or right side of the test area and test location designated in relation to centerline.

- 4.3.3 Random location of test sites on a single lift that is irregular in shape (Example 2 attached).
- 4.3.3.1 Determine the dimensions of the area to be tested.
- 4.3.3.2 Determine the minimum dimensions of a rectangle that will contain the area to be tested and has two sides parallel to centerline.
- 4.3.3.3 Divide the rectangle into the desired number of subsections or sublots and randomly locate the test sites locations as in sections 4.3.2 - 4.3.2.8 above. If a test site location falls outside the area to be tested, obtain a new set of random numbers for the test site and recalculate the test site location. Continue this procedure until the test site falls within the area to be tested.
- 4.3.4 Random selection of lifts to be tested (Example 3 attached).
- 4.3.4.1 When testing certain materials, especially backfill material, where an area to be backfilled will constitute a lot of material to be tested, a random selection of lifts to be tested is required.
- 4.3.4.2 Determine the projected number of lifts to be contained in the lot. Divide the number of lifts by the number of tests in the lot. If the value is not an even number, assign an additional lift to the first sublot and continue to assign a lift to each consecutive sublot until all remaining lifts have been assigned to a sublot.
- 4.3.4.3 By starting with the bottom lift, number the lifts in the lot.

MP 712.21.26 Issued: January 1972 Reissued: October 1999 Page 5 of 5

- 4.3.4.4 Select a single random number for each test site.
- 4.3.4.5 Multiply each random number by the number of lifts in each sublot and round the values to whole numbers. Each value designates which lift in each sublot that will be tested.
- 4.3.5 Once the lifts to be tested have been selected, the random location of the test site on the lift can be determined.
- 4.3.6 Random selection of the side of backfill for pipe culverts.
- 4.3.6.1 When a lot of pipe backfill is being tested, tests should be performed on both sides of the pipe. The side to be tested can be randomly selected by using the random numbers selected for the location of the tests along the pipe. If the random number is less than 0.500, the test is on the left side and greater than 0.500 on the right side of the pipe.

Robert K. Tinney, Director Contract Administration Division

TABLE 1

RANDOM NUMBERS

.858	.082	.886	.125	.263	.176	.551	.711	.355	.698
.576	.417	.242	.316	.960	.819	.444	.323	.331	.179
.687	.288	.835	.636	.596	.174	.866	.685	.066	.170
.068	.391	.739	.002	.159	.423	.629	.631	.979	.399
.140	.324	.215	.358	.663	.193	.215	.667	.627	.595
.574	.601	.623	.855	.339	.486	.065	.627	.458	.137
.966	.529	.757	.308	.025	.836	.200	.055	.510	.656
.608	.910	.944	.281	.539	.371	.217	.882	.324	.284
.215	.355	.645	.460	.719	.057	.237	.146	.135	.903
.761	.883	.771	.388	.928	.654	.815	.570	.539	.600
.869	.222	.115	.447	.658	.989	.921	.924	.560	.447
.562	.036	.302	.673	.911	.512	.972	.576	.838	.014
.481	.791	.454	.731	.770	.500	.980	.183	.385	.012
.599	.966	.356	.183	.797	.503	.180	.657	.077	.165
.464	.747	.299	.530	.675	.646	.385	.109	.780	.699
.675	.654	.221	.777	.172	.738	.324	.669	.079	.587
.279	.707	.372	.486	.340	.680	.928	.397	.337	.564
.338	.917	.942	.985	.838	.805	.278	.898	.906	.939
.316	.935	.403	.629	.130	.575	.195	.887	.142	.488
.011	.283	.762	.988	.102	.068	.902	.850	.569	.977
.683	.441	.572	.486	.732	.721	.275	.023	.088	.402
.493	.155	.530	.125	.841	.171	.794	.850	.797	.367
.059	.502	.963	.055	.128	.655	.043	.293	.792	.739
.996	.729	.370	.139	.306	.858	.183	.464	.457	.863
.240	.972	.495	.696	.350	.642	.188	.135	.470	.765

6+46

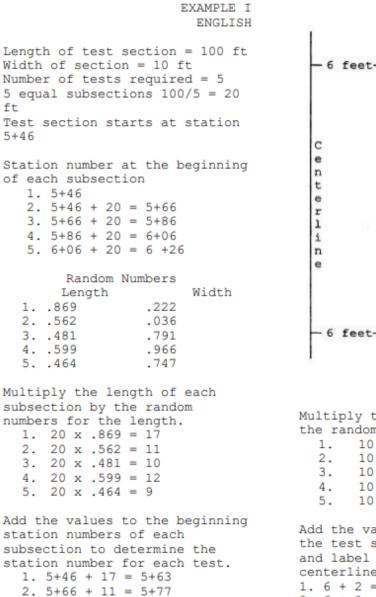
6+26

6+06

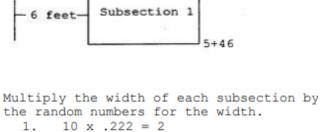
5+86

5+66

Plan View


-10 feet-

Subsection 5


Subsection4

Subsection 3

Subsection 2

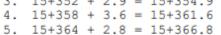
2.	5+66	+	11	=	5+77
з.	5+86	+	10	=	5+96
4.	6+06	+	12	=	6+18
5.	6+26	+	9	=	6 +35

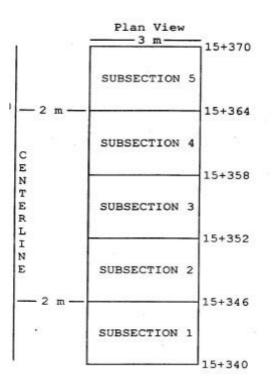
1. $10 \times .222 = 2$ 2. $10 \times .036 = 0$ 3. $10 \times .791 = 8$ 4. $10 \times .966 = 10$ 5. $10 \times .747 = 7$

Add the values to the constant distance the test section is from the centerline and label the values as right of centerline . 1. 6 + 2 = 8 ft right of centerline 2. 6 + 0 = 0 ft right of centerline 3. 6 + 8 = 14 ft right of centerline 4. 6 + 10= 16 ft right of centerline

5. 6 + 7 = 13 ft right of centerline

```
EXAMPLE I
METRIC
```


```
Length of test section = 30.00 m
Width of section = 3.00 m
Number of tests required = 5
5 equal subsections 30/5 = 6 m
Test section starts at station
15+340
Station number at the beginning
of each subsection
1. 15+340
2. 15+340 + 6 = 15+346
3. 15+346 + 6 = 15+352
4. 15+352 + 6 = 15+358
```


5. 15+358 + 6 = 15+364

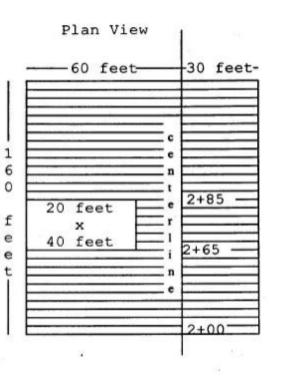
Random Numbers Length Width 1. .869 .222 2. .562 .036 3. .481 .791 4. .599 .966 5. .464 .747

```
Multiply the length of each
subsection by the random
numbers for the length.
1. 6.00 x .869 = 5.2
2. 6.00 x .562 = 3.4
3. 6.00 x .481 = 2.9
4. 6.00 x .599 = 3.6
5. 6.00 x .464 = 2.8
```

Add the values to the beginning station numbers of each subsection to determine the station number for each test site. 1. 15+340 + 5.2 = 15+345.2 2. 15+346 + 3.4 = 15+349.4 3. 15+352 + 2.9 = 15+354.9

Multiply the width of the test section by the random numbers for the width. 1. 3.00 x .222 = 0.7 2. 3.00 x .036 = 0.1 3. 3.00 x .791 = 2.4 4. 3.00 x .966 = 2.9 5. 3.00 x .747 = 2.2

Add the values to the constant distance the test section is from the centerline and label the values as right of centerline. 1. 2.00 + 0.7 = 2.7 m rt of centerline 2. 2.00 + 0.1 = 2.1 m rt of centerline 3. 2.00 + 2.4 = 4.4 m rt of centerline 4. 2.00 + 2.9 + 4.9 m rt of centerline 5. 2.00 + 2.2 = 4.4 m rt of centerline


EXAMPLE 2 METRIC

The shaded area designates the lift to be tested. For this example, 2 sublots are required with 1 test in each sublot.

Since the area to be tested is not rectangular in shape, place the smallest rectangle around the area that will include all the shaded area.

Divide the rectangle into 2 equal areas (160 feet long by 90 feet wide).

Since the centerline is located within the area to be tested, the offset can be calculated and measured from either side. For this example, work from the right side.

Determine the station number for the beginning of each sublot.

Sublot No. 1 2.+00 Sublot No. 2 2+00 + 80 = 2+80

	Numbers Width	Since there is the possibility that the location of a test site may fall outside the area to be tested, an
.902	.850	additional set of random numbers was selected.
.794	.850	

Multiply the random number by the length of the sublot $(80 \times .902 = 72 \text{ feet})$. Add the value of the beginning station number (2+00 + 72 = 2+72). Multiply the width of the sublot by the random number $(90 \times .850 = 76 \text{ feet})$. By working from the right side, it is 30 feet to the centerline, therefore the test site is 76 - 30 = 46 feet to the left of centerline. The test site falls outside the teSt area.

```
By using the next set of random numbers, calculate the test site location.

80 \times .275 = 22 feet

2+00 + 22 = 2+22

The test site for sublot 1 now falls within the test area.
```

Calculate the test location for sublot 2. 80 x .794 = 64 feet 90 x .850 = 76 feet 2+80 + 64 = 3+44 76 - 30 = 46 feet left of centerline

EXAMPLE 2 METRIC

The shaded area designates the lift to be tested. For this example, 2 sublots are required with 1 test in each sublot.

Since the area to be tested is not rectangular in shape, place the smallest rectangle around the area that will include all the shaded area.

Divide the rectangle into 2 equal areas (30 m long by 33 m wide).

Since the centerline is located within the area to be tested, the offset can be calculated and measured from either side. For this example, work from the right side.

Determine the station number for the beginning of each sublot.

Sublot No. 1 2.+165 Sublot No. 2 2+165 + 30 = 2+195 Plan View 8 m 25 m-2+225 C c n t 2+195 e 11 m r x 1 20 m 2+184i n e 2+165

Random Numbers Length Width .902 .850 .275 .023 .794 .850 Since there is the possibility that the location of a test site may fall outside the area to be tested, an additional set of random numbers was selected.

Multiply the random number by the length of the sublot $(30 \times .902 = 27.1 \text{ m})$. Add the value of the beginning station number (2+165 + 27.1 = 2+192.1). Multiply the width of the sublot by the random number $(33 \times .850 = 28.1 \text{ m})$. By working from the right side, it is 8 m to the centerline, therefore the test site is 28.1 - 8 = 20.1 m to the left of centerline. The test site falls outside the teSt area.

6

0

m

By using the next set of random numbers, calculate the test site location. $30 \times .275 = 8.2 \text{ m}$ 2+165 + 8.2 = 2+173.2The test site for sublot 1 now falls within the test area.

Calculate the test location for sublot 2 $30 \times .794 = 23.8 \text{ m}$ 2+195 + 23.8 = 2+218.8 $33 \times .850 = 28.0 \text{ m}$ 28 - 8 = 20 m left of centerline

EXAMPLE 3

21 lifts of material are required to backfill the pipe.

All of the backfill material is included in 1 lot. There are 5 tests required with 1 test in each sublot.

Divide the number of lifts by the number of sublots to determine the number of lifts in each sublot (21/5 = lifts with 1 lift left over). This includes the lift in sublot number 1.

Sublot	Number	1	Lifts	1 -	5
Sublot	Number	2	Lifts		
Sublot	Number	3	Lifts		
Sublot	Number	4	Lifts		
Sublot	Number	5	Lifts	18 -	- 21

Random numbers 1. .599 2. .464 3. .675 4. .279 5. .338

Multiply the number of lifts in the sublot by the random numbers. The values determine which lift in each sublot to test.

 1. 5 x .599 = 3
 Test lift 3 in sublot number 1, Lift number 3

 2. 4 x .464 = 2
 Test lift 2 in sublot number 2, Lift number 7

 3. 4 x .675 = 3
 Test lift 3 in sublot number 3, Lift number 12

 4. 4 x .279 = 1
 Test lift 1 in sublot number 4, Lift number 14

 5. 4 x .338 = 1
 Test lift 1 in sublot number 5, Lift number 18

CROSS SECTION OF PIPE BACKFILL

21			-	
20				
19				
18	AL-mar-			
17				
16	1.0			
15				
14				
13				
12				
11				
10				
9	200			
8				
7				
6		-		
5			20	
4	/		/	
3		PIPE		
2	1		L	
1				

MP 700.00.50 CHAPTER 4

MP 700.00.50 ORIGINAL ISSUANCE: AUGUST 1981 1ST REVISION: FEBRUARY 1992 REISSUED: JANUARY 1995 PAGE 1 OF 2

WEST VIRGINIA DEPARTMENT OF HIGHWAYS DIVISION OF HIGHWAYS MATERIALS CONTROL, SOIL AND TESTING DIVISION

MATERIALS PROCEDURE

METHOD FOR ACCEPTANCE OF COMPACTION TESTING

- 1.0 PURPOSE
- 1.1 To provide a procedure for the acceptance of compaction testing.
- 2.0 SCOPE
- 2.1 This procedure is applicable to all materials that require evaluation of compaction tests.
- 3.0 TESTING
- 3.1 The minimum frequency for acceptance testing shall be 10% of the contractor's individual tests. Five tests shall be performed in a lot for acceptance testing.
- 3.2 Acceptance testing shall be distributed throughout the placement of material.
- 3.3 The material should be categorized according to the base, subgrade, pipe backfill, embankment, etc.
- 4.0 EVALUATION
- 4.1 Calculations shall be rounded to the following significant digits according to AASHTO Method R-11.

Average (X)	0.1%
Standard Deviation	0.01
Range	1%

4.2 Determine the number of lots tested by the contractor for a particular material since the last monitoring including the lot just tested. Record the percent relative densities on the attached form.

MP 700.00.50 ORIGINAL ISSUANCE: AUGUST 1981 1ST REVISION: FEBRUARY 1992 REISSUED: JANUARY 1995 PAGE 2 OF 2

- 4.3 Calculate the standard deviation (S) for the percent relative densities.
- 4.4 Calculate the range (R) for plus and minus 1.65 standard deviations (S) from the average (X) for the contractor's tests (R =X ± 1.65 S).
- 4.5 Compare the acceptance tests to the calculated range.
- 4.5.1 If all the acceptance tests are within the range, the testing is similar. When the testing is similar, the degree of compaction for the lots of material represented by the acceptance evaluation can be accepted.
- 4.5.2 If any of the 5 acceptance tests are outside the range, calculate 3 standard deviations for the contractor's tests ($R = X \pm 3S$).
- 4.5.2.1 If all acceptance tests are within the range, the testing is considered similar, however, the quality control practices by the contractor should be reviewed for possible problems.
- 4.5.2.2 Any test outside the standard 3 deviation range indicates that there are probably problems with the quality control system and no additional material should be placed until the problem is resolved. The investigation would include checking such areas as equipment, test procedures, location of tests, variability of materials, compaction techniques, etc. The results of the investigation shall be documented in the project files.

Sary Z. Robson, Director Materials Control, Soils and Testing Division

MP 700.00.50 ORIGINAL ISSUANCE: AUGUST 1981 1ST REVISION: FEBRUARY 1992 REISSUED: JANUARY 1995 ATTACHMENT 1

PROJECT NUMBER:	
ITEM NUMBER (S):	
TYPE OF MATERIAL:	
DATE:	

LOT NUMBER		li i		
	1	, i i i i i i i i i i i i i i i i i i i		
	2]		
	3	1		
	4	1		
	5			
	AVERAGE (X)		STANDARD DEVIATION	
ACCEPTANCE TESTS				
	1	X + 1.65 (S) =		= UPPER LIMIT
	2	X - 1.65 (S) =		= LOWER LIMIT
TEST NUMBER	3	12 - 35 Marine Marine Marine Marine	102200000	NEWSCONDOCTOR
	4	WITHIN LIMITS	YES	(SIMILAR)
	5		NO	(DISSIMILAR)
		X + +3 (S) =		= UPPER LIMIT
		X 3 (S) = WITHIN LIMITS	YES NO	= LOWER LIMIT (SIMILAR) (DISSIMILAR)

QUALITY CONTROL TESTS

EVALUATED BY: _____

MP 717.04.21

CHAPTER 5

MP 717.04.21 AUGUST 23, 2024 PAGE 1 OF 10 WEST VIRGINIA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING DIVISION

MATERIALS PROCEDURE

GUIDE FOR QUALITY CONTROL OF COMPACTION

1. PURPOSE

- 1.1 This procedure sets forth minimum guidelines for the Contractor's Quality Control (QC) Plan for embankment, subgrade, pipe and random fill used as structure backfill material and aggregate base courses. It is intended that these requirements be used as a procedural guide in detailing the inspection, sampling, and testing necessary to maintain compliance with the specification requirements.
- 1.2 To establish procedural guidelines for approval and documentation of a Master QC Plan.

2. SCOPE

2.1 This procedure is applicable to all items requiring compaction control except asphalt pavements. This outlines the QC procedures for Compaction items and includes procedures for approving and using Master and/or Project Specific QC Plans. This procedure also aids in documentation and retention of QC Plans in ProjectWise.

3. DEFINITIONS

- 3.1 Moisture/Density Gauge (Gauge) Any gauge that has been approved for use on WVDOH projects. A list of these gauges and their applicable uses is available of the WVDOH MCST Webpage.
- 3.1.1 Moisture/Density Gauge is to replace all instances of the term "Nuclear Gauge" in all WVDOH documents.

4. **REFERENCED DOCUMENTS**

- 4.1 MP 100.00.03 Method Of Evaluation of Non-Standard or Non-Conforming Materials in Construction Via DMIR
- 4.2 MP 109.00.21 Basis for Charges for Non-Submittal of Sampling & Testing Documentation by the Established Deadline

MP 717.04.21 AUGUST 23, 2024 PAGE 2 OF 10

- 4.3 MP 207.07.20 Nuclear Field Density Moisture Test for Random Material Having Less Than 40% of +3/4 Inch Material
- 4.4 MP 700.00.24 Nuclear Density Test by The Roller Pass Methods
- 4.5 MP 700.00.50 Procedure for Monitoring the Contractor's Compaction Testing of Bituminous Concrete, Base Course, Embankment, Sub-Grade and Pipe and Structural Backfill
- 4.6 MP 712.21.26 Procedure for Determining Random Location of Compaction Tests

5. GENERAL REQUIREMENTS

- 5.1 The Contractor shall provide and maintain a QC system that will provide assurance that all materials submitted to the Division for acceptance will conform to the contract requirements whether natural, manufactured or processed by the Contractor, or procured from suppliers. The QC Plan should clearly describe the methods by which the QC Program will be conducted. For example, the items to be controlled, tests to be performed, testing frequencies, sampling locations and techniques all should be included etc. Each item should be listed separately.
- 5.1.1 A detailed plan of action regarding disposition of non-specification material shall be included. Such a plan shall provide for immediate notification of the Division in the event of a non-conforming situation or instance.
- 5.2 Inspection and testing records shall be maintained, kept current, and made available for review by the Engineer throughout the life of the contract. All other documentation, such as date of inspections, tests performed, temperature measurements, and any accuracy, calibration, or re-calibration checks performed on production or testing equipment shall be recorded and kept.
- 5.3 The Contractor shall maintain standard calibrated equipment and qualified personnel in accordance with the contract and Specification requirements for the applicable material.

6. QUALITY CONTROL PLAN

- 6.1 The Contractor shall prepare a QC Plan detailing the type and frequency of inspection, sampling, and testing necessary to measure and control the compaction properties of materials and construction governed by the Specifications. As a minimum, the sampling and testing plan should detail sampling location, sampling techniques, and test frequency. QC sampling and testing performed by the Contractor may be utilized by the Division for acceptance.
- 6.1.1 A QC Plan shall be developed by the Contractor and submitted to the Engineer prior to the start of construction on every project. Acceptance of the QC Plan by the Engineer will be contingent upon its concurrence with these guidelines as listed in section 6.2 through 6.4.5.2.
- 6.1.2 As work progresses, an addendum(s) may be required to a QC Plan to keep the QC program current. Personnel may be required to show proof of certification for testing.

6.2 QC PLAN MINIMUM REQUIREMENTS

- 6.2.1 The QC Plan should be on Company Letterhead, be addressed to the District which it pertains, and include the items to be controlled. An example/template is provided in Attachment 1.
- 6.2.2 Provide the name of the Person who is responsible for the Company's QC program and will be liaison with the Division's personnel.
- 6.2.3 List all inspectors' names performing compaction tests on the project and their date becoming a Certified Soils & Aggregate Compaction Inspector as per WVDOH Specification Section 106 Control of Materials.
- 6.2.4 Compaction field tests will be performed according to MP 207.07.20, MP 700.00.24, and Standard Specification 716.32.3
- 6.2.5 Soft shale tests shall be conducted according to Section 716 of the Standard Specifications.
- 6.2.6 Specify in the plan the methods by which each item will be tested. Table A and Table B summarize the different materials, minimum frequencies, and the appropriate test procedure or method for controlling each material.

				MATERIA	AL TYPE	
TEST PROCEDURE	LOT SIZE	NUMBER OF TEST	PORTLAND CEMENT TREATED AGGREGATE BASE COURSE	CRUSHED AGGREGATE BASES AND SUBBASE COURSES	HOT-MIX HOT- LAID BITUMINOUS TREATED BASE COURSE	SOIL CEMENT BASE COURSE
MP 700.00.24	2000 FEET	1 PER SUBLOT	Х	X	Х	
MP /00.00.24 2000 FEET		5 PER LOT	Λ	Λ	л	
MP 207.07.20	2000 FEET	1 PER SUBLOT				х
WIP 207.07.20	2000 FEE1	5 PER LOT				Λ

Table A- COMPACTION CONTROL OF AGGREGATE BASE COURSES

MP 717.04.21 AUGUST 23, 2024 PAGE 4 OF 10

TEST	LOT SIZE	NUMBER OF TESTS	MATERIAL WITH LESS THAN 40% RETAINED ON 3/4" (19.0 mm) SIEVE	MATERIAL WITH 40% OR MORE RETAINED ON 3/2 /10 0 mm) SIEVE	LOOSE LIFT OR LESS	MATERIAL THAT CAN BE PLACED IN A	LOOSE LIFT GREATER THAN 12" (300 mm)	GRANULAR SUBGRADE	SELECT MATERIAL FOR BACKFILLING AND CLASS I AGGREGATE
				UNIFORM	NON-UNIFORM	ROCK	HARD SHALE		
MP 207.07.20	SEE STD. SPECS.	1 PER SUBLOT 5 PER LOT	Х						
MP 700.00.24	SEE STD. SPECS.	1 PER SUBLOT, 5 PER LOT		X [1]	X [1]. [2]			Х	х
PROOF Rolling		1 REPORT PER LIFT				X	x		

Table B - COMPACTION CONTROL OF EMBANKMENT BACKFILL AND SUBGRADE

If a hole for a direct transmission density reading cannot be readily made due to the coarse material, proof roll the lift. If density readings vary above 105 percent or below 95 percent and the material appear to be non-uniform, proof roll the lift. 1. 2.

6.2.7 A flow chart for embankment material, Table C, shall serve as a guide for identifying material types, maximum rock size, lift thickness and compaction test method. This table shall be included in the QC Plan for making field decisions to ensure that each type of material is properly placed and compacted.

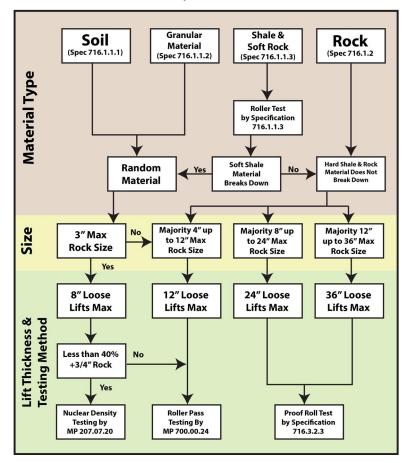


Table C - Guide for Quality Control of Embankment Material

- 6.2.8 The plan shall include a statement that all necessary testing equipment will be provided to perform the procedures outlined in MP 700.00.24, MP 207.07.20, and Specification 716.3.2. The plan shall list the make and model of equipment for proof rolling and its weight per Specification 716.3.2. The plan shall list the make, model and operating weight of the roller(s) to be used for the soft shale tests and per Specification 716.1.1.3.
- 6.2.9 List the type of gauge to be used. The calibration frequency must be acceptable to the Division. Gauges must be calibrated according to the manufacturer's requirements. This information shall be given to the Division upon their request.
- 6.2.10 If applicable, outline the procedure for performing a stability check on gauges that are not within the tolerance range for standard counts during the interval between calibrations. Standard counts derived during the stability check for stable gauges may be used in lieu of the manufacturer's standards. Gauges found to be unstable cannot be used until repaired and calibrated.
- 6.2.11 Include in the plan the lot and sublot sizes to be used for testing each type of installation. During construction, some flexibility in lot sizes may be made if the situation warrants in order to maintain a workable system. For example, two or more areas containing small quantities of embankment material might be combined into one lot at the Contractor's option and subject to the Division's approval.

- 6.2.12 Specify the maximum time period for completion of a lot of embankment material. As a guide, if the desired lot size cannot be obtained within seven calendar days, then the material placed up to that time would constitute the lot and the specified number of tests for a lot would still be performed.
- 6.2.13 Specify in the plan when quality control tests for base and subgrade will be performed. QC tests are to be performed after the material has been shaped and final rolling has been completed.
- 6.2.14 The Contractor is responsible for the accuracy of their individual testing and calculations.
- 6.2.15 List the forms and method of distribution for tests and measurements.
- 6.2.16 Compaction test results are reported on forms specified in MP 207.07.20 and MP 700.00.24. The forms are supplied by the Division and available on the MCS&T Webpage¹. The completed form shall be submitted to the Division's project supervisor, District Materials Lab, and a copy shall be retained for the Contractor's records.
- 6.2.17 Indicate the length of time after tests and measurements are completed that documentation will be provided.
- 6.2.17.1 Test results and measurements shall be made available to project personnel for review on a daily basis. Formal submission of measurements should be made within 24 hours after the measurements are taken and test results within 24 hours after testing of a lot is completed.
- 6.2.17.2 Tests performed in a lot before final rolling is completed should be submitted to the Project Supervisor and retained in the project files. This includes test documents for failing lots and moisture checks.
- 6.2.18 List the compaction equipment giving the quantity, make, model, and weight or applied force at which each roller will be operated. If ballast will be added to a roller, indicate the type and quantity of ballast and the method for verifying the gross weight. Attach the manufacturer's specifications for compaction capabilities for each roller to the plan or state the procedure for verifying the compaction capabilities of each roller in cases where the manufacturer's specifications are not available. This equipment shall meet the requirements of Section 207.7.5 of the Specifications.
- 6.2.19 Indicate in the plan that a minimum of a 10-ton (9.07 Mg) roller will be used for testing in accordance with MP 700.00.24 for soil and granular material only.
- 6.2.20 Rollers used to breakdown soft shale shall be in accordance with Section 716.1.1.3 of the Specifications and shall have a minimum of 1.5 tons per linear foot of roller drum width.

¹ https://transportation.wv.gov/highways/mcst/Pages/tbox.aspx

MP 717.04.21 AUGUST 23, 2024 PAGE 7 OF 10

- 6.2.21 Specify the method by which proof rolling will be conducted on embankment materials. The materials to be proof rolled are summarized in Table B in Section 6.2.6.
- 6.2.22 List the number of passes to be made and corrective measures if soft areas are detected. Documentation should include the type of material, number of passes, and corrective action if soft areas are detected.
- 6.2.23 For equipment used for proof rolling explain how the gross weight will be determined for any ballast added to the operating weight. For alternate proof rollers, attach to the QC Plan the calculations used to determine that the roller meets specifications. Also, attach the manufacturer's specifications for all proof rollers to the Plan. The following calculation is used to determine if an alternate proof roller meets specifications:

ENGLISH Metric $c = \sqrt{(ab\pi)}$ $c = \sqrt{(ab\pi)}$ 2 50.8

Where:

a = weight (force) on a single tire = pounds (kg x .009807 = kN)
b = operating tire pressure = psi (kPa)
c = weight (force) per inch (mm) width of tire = pounds per inch (Nm)
The weight (force) per inch (mm) width of tire must be equal to or greater than 1315
pounds (9.067 kN/mm).

- 6.2.24 Outline the procedure for notifying the Division when the test section in MP 700.00.24 will be performed. The Division shall be notified a minimum of 24 hours in advance unless other arrangements acceptable to the Division can be made.
- 6.2.25 Laboratory testing for random material is not required unless the material has unusual characteristics or differs from the soil and rock data used to develop the design. Testing to develop density curves, specific gravities, organic content, etc. may be required.
- 6.2.26 A list of test procedures is contained in Section 716 of the WVDOH Standard Specifications as a guideline for required testing should the need arise for random material.
- 6.2.27 Design a plan of action for the disposition of non-specification material, such as material with excessive moisture, excessive organic content, etc. These materials shall be stockpiled away from the embankment or fill placement areas. The Project Supervisor should be immediately notified in the event a nonconformance situation is detected.
- 6.2.28 List the method(s) and frequencies per Table D by which lift thickness measurements will be taken. If surveying of compacted lifts is not utilized, then the maximum loose lifts per Table C shall be measured.

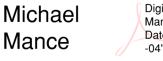
MATERIAL TYPE	NUMBER OF MEASUREMENTS
EMBANKMENT	MINIMUM OF 3 PER LIFT
SUBGRADE	MINIMUM OF ONE PER 1200 FEET PER WORKING WIDTH
PIPE BACKFILL	MINIMUM OF ONE PER SIDE PER LIFT
STRUCTURE BACKFILL	MINIMUM OF ONE PER LIFT

TABLE D - LIFT THICKNESS MEASUREMENTS

6.3 TYPES OF QC PLAN

- 6.3.1 QC Plans which are intended for use on more than one project shall be defined as Master QC Plans. Section 6.4 outlines the procedures for Master QC Plan submittal and approval.
- 6.3.2 QC Plans which are intended for use on a single project shall be defined as Project Specific QC Plans. Project Specific QC Plans shall contain a cover letter which includes the following: project name/description, CID#, Federal and/or State Project Number.
- 6.3.3 A contractor may submit a Master QC Plan for field operations instead of a Project Specific QC Plan.
- 6.3.4 Once any QC Plan is approved for a project, the key date shall be entered in AASHTOWare software by the appropriate District Materials personnel. The first date entered shall be the date the Project QC Plan letter is received. The second date shall be when the District approves the QC Plan for use on the project.
- 6.4 MASTER QUALITY CONTROL PLAN
- 6.4.1 The intent of Master QC Plans is to facilitate the approval process in a more uniform manner. A Master QC Plan can be submitted to the Division/District by the Contractor when their work in a given District is routinely repetitive for the year. The Master Quality Control Plan is applicable for only the calendar year for which it has been approved.
- 6.4.2 The Contractor shall submit the Master Compaction QC Plan yearly to each District in which they have work in. If the Contractor does not have work in a given District for the year then no Master QC Plan shall be submitted to that District.
- 6.4.3 The District will review the submitted Master QC Plan and assign a laboratory reference number upon approval for future referencing. The District will acknowledge approval of Master QC Plan to the Contractor by letter (see Attachment #2 for an example), which will include the laboratory reference number and a copy of the approved Master QC Plan attached. This will then be scanned and placed in ProjectWise under the appropriate District's Org for that Contractor.

MP 717.04.21 AUGUST 23, 2024 PAGE 9 OF 10


- 6.4.4 Once a project has been awarded, if a contractor elects to use the approved Master Compaction QC Plan on that project, the Contractor shall submit a letter requesting to use the Master QC Plan for that project. This letter must be on the Contractor's letterhead, be addressed to the District Engineer/Manager or their designee, and contain the following information: project number, CID#, project name/ description, type of Quality Control Plan and the laboratory reference number for the Master QC Plan (See Attachment #3 for an example).
- 6.4.5 The District shall review the referenced Master QC Plan to ensure that it covers all items in the project. If the referenced Master QC Plan is found to be insufficient for some items on the project, the District shall request the Contractor to submit additional information for QC of those items as an addendum on a project specific basis. When the District is satisfied with the QC Plan for this project, a letter shall be sent to the Contractor acknowledging approval (see Attachment #4 for an example), with the following attached: the Contractor's project QC Plan request letter and the Master QCP approval letter. This shall then be placed in the project's incoming-mail mailbox in ProjectWise.
- 6.4.5.1 A Master QC Plan that has been approved for project use shall be acceptable for the duration of that project, even if that project continues into subsequent calendar years, unless otherwise directed by the District.
- 6.4.5.2 For the use of Division Personnel, the District approval letter for this project must state the ProjectWise link to the referenced Master QC Plan for that Contractor. (i.e., WVDOT ORGS > District Organization #> Materials > Year>Master QC Plans...)

7. CERTIFICATION & ACCEPTANCE SAMPLING AND TESTING

- 7.1 The Contractor shall certify that compaction testing and sampling is in conformance with the approved QC plan, referenced MP's and referenced Standard Specifications in a letter format on the company's letterhead. The certification shall summarize what materials were encountered and the compaction method/lift thickness utilized. The letter shall state whether any deviations from the requirements of the QC plan, MP's, and Standard Specifications exist, and why.
- 7.2 Acceptance sampling and testing is the responsibility of the Division. QC tests by the Contractor may be used for acceptance.
- 7.3 The Division shall sample and test for applicable items completely independent of the contractor at a frequency equal to but not limited to approximately ten (10) percent of the frequency for testing given in the approved Quality Control Plan. Witnessing the contractor's sampling and testing activities may also be a part of the acceptance procedure, but only to the extent that such tests are considered "in addition to" the ten (10) percent independent tests.
- 7.4 MP 700.00.50, MP 207.07.20, and Specification Section 716.3.2.3 outlines the procedures to be followed for acceptance of compaction testing.

8. ABSENT TESTING OF MATERIAL

- 8.1 If the Contractor fails to perform testing of the material in accordance with the Contractor's Division Approved Quality Control Plan, payment for the portion of the item represented by the absent test shall be withheld, pending the Engineer's decision whether or not to allow the material to remain in place. Testing includes both performing the test and submitting the results as per MP 109.00.21.
- 8.1.1 If the Engineer allows the material to remain in place, the Division shall not pay for the material represented by the absent test. However, the Division shall pay for the cost of the placement of the material, including labor and equipment. The invoice or material supplier cost (if applicable), determined at the time of shipment, shall be used to calculate the cost of material when evaluating the total cost of labor and equipment.
- 8.1.1.1 If there is no material cost, the deduction shall be assessed on the tonnage of material represented by the missing test via a District Materials Inspection Report (DMIR).

Digitally signed by Michael Mance Date: 2024.08.23 14:35:26 -04'00'

Michael A. Mance, P.E. Interim Director Materials Control, Soils & Testing Division

MP 717.04.21 Steward – Pavement Analysis & Evaluation Section MM:A ATTACHMENTS

ATTACHMENT 1 - EXAMPLE GUIDE FOR COMPACTION QUALITY CONTROL PLAN

The Acme Company 20 First St. Somewhere, WV XXXXXX

Mr/./Ms/Mrs. ______ WV Division of Highways District _____ Engineer/Manager ______, WV ______

RE: <u>(YEAR)</u> Master Compaction QC Plan DISTRICT: _____

Dear Mr./Ms/Mrs.

We are submitting our Compaction Quality Control Plan for field control, developed in accordance with sections 716 and 717 of the (year) WVDOH Standards and Specifications, (year) WVDOH Supplemental specifications, MP 700.0024, MP 207.07.20, MP 712.21.26 and MP 700.00.50.

The Quality Control Program is under the direction of ______. They can be contacted by telephone number ______, email ______ and/or in person.

- 1.) All testing will be performed by qualified personnel as per WVDOH Specification Section 106 Control of Materials. Proof of personnel certification shall be provided to WVDOH inspectors upon request.
- 2.) Specify the methods by which each item will be tested .(IE.. 207,307...etc). Table A and Table B (attached) summarizes the different materials, minimum frequencies, and the appropriate test procedure or method for controlling each material. A flow chart for embankment material, Table C (attached), is intended to serve as a guide for making field decisions to insure that each type of material is properly placed.
- 3.) Testing Equipment used will be as required in MP 700.00.24 and MP 207.07.20.

- 4.) Type of gauge to be used (IE.... Troxler 3430, etc). State that calibration information is available upon request by the Division/District.
- 5.) Outline the procedure for performing a stability check on nuclear gauges which are not within the tolerance range for standard counts during the interval between calibrations. Gauges found to be unstable cannot be used until repaired and calibrated.
- 6.) Include in the plan the lot and sublot sizes to be used for testing each type of installation.
- 7.) Specify the maximum time period for completion of a lot of embankment material.
- 8.) Specify in the plan when quality control tests for base and subgrade will be performed.
- 9.) List the forms and method of distribution for tests and measurements. (The forms are specified in MP 207.02.20 and MP 700.00.24.) State that test results will be made available to WVDOH personnel on a daily basis.
- 10.) List the compaction equipment giving the quantity, make, model, and weight or applied force at which each roller will be operated. If ballast will be added to a roller, indicate the type and quantity of ballast and the method for verifying the gross weight. Attach the manufacturer's specifications for compaction capabilities for each roller to the plan or state the procedure for verifying the compaction capabilities of each roller in cases where the manufacturer's specifications are not available.
- 11.) Indicate in the plan that a minimum of a 10 ton (9.07 Mg) roller will be used for testing as per 700.00.24.
- 12.) Indicate in the plan that when shale materials are encountered, the shale hardness test will be performed to determine if material is a soft shale as per 716.1.1.3 of the WVDOH Standards and Specifications.
- 13.) Specify the method by which proof rolling will be conducted on embankment materials. The materials to be proof rolled are summarized in Table B (attached).
- 14.) Laboratory testing for random material is not required unless the material has unusual characteristics or differs from the soil and rock data used to develop the design. Testing to develop density curves, specific gravities, organic content, etc. may be required. The Yearly Quality Control Plan should state that these additional tests must be performed by qualified Aggregate testing personnel as per as per WVDOH Specification Section 106 Control of Materials.

- 15.) Design a plan of action for the disposition of non-specification material.
- 16.) List the method(s) and frequencies by which the lift thickness measurements will be taken.

Very Truly Yours,

ATTACHMENT 2

**** WVDOH LETTERHEAD ****

THE ACME COMPANY INC. 20 First St. Somewhere, WV XXXXX

RE: Compaction Master QCP Description: 20XX Year

Dear Mr./Ms/Mrs._____,

Your Master Quality Control Plan(**M**# - ######) for Compaction has been reviewed and found to be acceptable for the following items:

- 207001-001	Unclassified Excavation	- 207002-001 Subgrade
- 211-001	- 307001 Items	- 604 items
- 212 Items	- 605 items	-etc

As work progresses throughout the season an addendum(s) may be required to this QCP to keep the QC program current. **Please use M# - ###### when corresponding about this QC plan.** Please make sure that all appropriate personnel have a copy of this plan in their possession.

Very Truly Yours,

ATTACHMENT 3

The ACME COMPANY 20 First St. Somewhere, WV XXXXX

EXAMPLE

Mr./Ms/Mrs WV Division of Highways District _____ Engineer/Manager , WV _____

RE: Compaction Quality Control plan for Field ---- Project

Dear Mr./Ms/Mrs._____,

We would like to use our approved Yearly Master Quality Control Plan, reference number ______ for the project referenced above. All Compaction items on the referenced project are covered by the Master Quality Control Plan.

The QC Plan is under the direction of

_____(title), and will be the company's contact representative to the Department of Highways District Materials and Construction Departments. He/She can be contacted in person at the project, by telephone _____ or at email account _____.

Very Truly Yours,

ATTACHMENT 4

**** WVDOH LETTERHEAD ****

THE ACME COMPANY INC. 20 First St. Somewhere, WV XXXXX

RE: Compaction QC Plan Project CID#: ####### Fed/State Project #: NHPP- ## - ####.## Description: Falling Slide County : XXXXXXX

Dear Mr./Ms/Mrs.

Your request to use Master Quality Control Plan (M# - ######) for compaction on the project referenced above, has been reviewed and found to be acceptable for the following items on the referenced project:

- 207001-001 Unclassified Excavation		- 207002-001	Subgrade
- 307001 Items	- 604 items	- 212 Items	-etc

As work progresses throughout this project an addendum(s) may be required to this QCP to keep the QC program current. **Please use M###### when corresponding about this QC plan.** Please make sure that all appropriate personnel have a copy of this plan in their possession.

For Division/District

The Master Quality Control Plan can be reviewed in ProjectWise folder shown below:

WVDOTORG> D0# > year > MASTERQCPLANS > Contractors >Contractor Name > Name of Quality Control Plan

Very Truly Yours,

MP 207.07.20 CHAPTER 6

MP 207.07.20 OCTOBER 1999 RECONFIRMED: JANUARY 4, 2023 PAGE 1 OF 10

WEST VIRGINIA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING DIVISION

MATERIALS PROCEDURE

NUCLEAR FIELD DENSITY - MOISTURE TEST FOR RANDOM MATERIAL HAVING LESS THAN 40% OF + 3/4 INCH MATERIAL

1. PURPOSE

1.1 This procedure is to determine the density and moisture content of random materials.

2. SCOPE

2.1 This method of testing is applicable to random materials used for embankments, subgrades, backfill, and soil cement base courses.

3. REFFERENCED DOCUMENTS

- 3.1 *AASHTO Standards:*
- 3.1.1 AASHTO T99, Method C
- 3.2 *Materials Procedures:*
- 3.2.1 MP 712.21.26
- 3.2.2 MP 717.04.21U.S.

4. EQUIPMENT

- 4.1 One complete nuclear density-moisture gauge unit meeting the requirements specified in MP 717.04.21. A copy of the manufacturer's print-out of standard counts is to be included.
- 4.2 One 1/30 ft³ proctor mold assembly with a 5.5 LB rammer meeting the requirements of AASHTO T99.
- 4.3 One steel foundation plate having minimum dimensions of 15 in. x 15 in. x 5/8 in. or a 200 LB block of concrete.
- 4.4 One extruder for removing specimens from proctor mold.
- 4.5 One balance having a capacity of at least 10 kg and sensitive to 1.0 g.
- 4.6 One stove for drying moisture samples.
- 4.7 One 32 oz. ballpeen hammer or equivalent.

MP 207.07.20 OCTOBER 1999 RECONFIRMED: JANUARY 4, 2023 PAGE 2 OF 10

- 4.8 Two pans with a capacity to hold 10 LB of material.
- 4.9 One pan suitable for drying moisture samples.
- 4.10 One wire brush
- 4.11 One 3/4 in. U.S. Standard Sieve
- 4.12 One scoop
- 4.13 One ruler or tape measure
- 4.14 One measuring tape (should be a minimum of 50 ft)
- 4.15 One paint brush approximately 2 in wide
- 4.16 One 18 in. chisel or equivalent
- 4.17 One draw knife
- 4.18 T-316 data sheets and attached tables
- 4.19 One appropriate vehicle for transporting nuclear gauge and test equipment

5. PERSONNEL TRAINING

- 5.1 All personnel performing the testing must have the minimum training requirements specified in MP 717.04.21.
- 5.2 All personnel must know and follow the requirements of the Nuclear Regulatory Commission.

6. ROUNDING OF DATA

- 6.1 Test values and calculations are to be rounded according to the following procedure:
- 6.1.1 If the figure following the last significant number to be retained is five or larger, increase the last significant number to be retained by one.

- 6.1.2 If the figure following the last significant number to be retained is less than five, the significant number is left unchanged.
- 6.1.3 Test values and calculations shall be rounded to the following nearest significant digit.

7. **PREPARATION FOR TESTING**

- 7.1 Weigh the pans and proctor mold and record the weights on the sides of the equipment. The weights shall be checked at least on a monthly basis.
- 7.2 All test data is to be recorded on the attached form T-316.

- 7.3 Standardization of the nuclear gauge
- 7.3.1 Warm up the gauge according to the manufacturer's specifications.
- 7.3.2 Standardization of the gauge must be performed away from metal and other objects.
- 7.3.3 Clean the top of the standard block and the bottom of the gauge with a cloth.
- 7.3.4 Place the gauge on the standard block with the gauge turned the correct way. For the Troxler 3400 series gauges, the scaler end of the gauge must be tight against the standard block flange.
- 7.3.5 Make the necessary adjustments on the gauge and perform a standardization according to the manufacturer's specifications.
- 7.3.6 Compare the standard counts to the manufacturer's standard counts. The standard count must be within $\pm 2\%$ for density and $\pm 4\%$ for moisture from the manufacturer's standards.
- 7.3.7 If the gauge is not within the specified tolerances for either moisture or density, repeat Section 7.3.5 7.3.6. If the gauge will not standardize for either moisture or density after 4 attempts, a different gauge shall be used. The gauge which failed to standardize may be used again in the future if the procedure referenced in Section 5.2.10 of MP 717.04.21 is followed and the gauge is found to be stable.
- 7.3.8 When a gauge is used for testing pipe or structure backfill in a trench, first check the standardization of the gauge according to Sections 7.3.1 7.3.6. If the gauge is functioning properly, then standardize the gauge in the trench. The standard counts in the trench are used for testing in the trench only and the tolerances shall not be applied to the standard counts taken in the trench. When the gauge is moved to a non-trench condition for testing, new standard counts shall be required.
- 7.3.9 Gauges shall be standardized before testing and at least every four hours during testing.
- 7.4 Record the contract ID, project number, item number, etc.
- 7.5 The lot number has the following prefix letter designations based on the use of the material:

Embankment -	F
Subgrade -	S
Base -	В
Pipe and Structure Backfill -	Р

7.6 Randomly locate the test site according to MP 712.21.26.

8. **PROCEDURE**

- 8.1 Density and moisture determination
- 8.1.1 Smooth the test site selected for testing. Fill any voids in the surface using the fines scraped from the surface. Avoid adding excessive fines that would form a build-up on the surface (no more than 1/8 in.).
- 8.1.2 Place the guide plate on the test site. Next, place the drive rod in the plate guide and while standing on the plate, drive the rod at least 2 in. deeper than the location where the end of the gauge source rod will be when testing. The gauge source rod can be extended in 2 in. increments. The source rod must be as deep as possible within the lift but must not extend beyond the lift. For example, a 5 in. (125 mm) lift shall be tested with the source rod in the 4 in. position and the hole shall be 6 in. deep. Carefully remove the drive rod to prevent material from falling into the hole.
- 8.1.3 Place the gauge over the test site and insert the source rod to the desired depth. Pull the gauge tight against the side of the hole toward the scaler. Make sure the gauge is sitting flush on the material.
- 8.1.4 Take a one-minute density and moisture reading. Record the dry density (DA) and moisture (MA).
- 8.2 Determination of the percent of + 3/4 in. material
- 8.2.1 Excavate approximately 4500 g (10 LB) of material immediately beneath the test site. Excavate the material from the test hole toward the scaler end of the gauge and to the depth of the position where the source rod was located. Keep the excavated material covered to prevent moisture loss.
- 8.2.2 Zero the scales. The scales shall be located in an enclosed area of the vehicle that is protected from air movement. The scales are to be checked for zero before each weighing. Weigh the excavated material (CA).
- 8.2.3 The material weighed in 8.2.2 shall be passed over the 3/4 in. sieve. Break up any clumps of soil that are retained on the sieve and clean the fines from the + 3/4 in. material.
- 8.2.4 Weigh the +3/4 in. material (CD) obtained in 8.2.3.
- 8.2.5 Calculate the percent of +3/4 in. material (CG) by using the equations on form T-316. If the percentage of +3/4 in. material is 40% or more, terminate the test. Refer to MP 717.04.21 for instructions

8.2.6 Determine the bulk specific gravity (CH) of the dominant +3/4 in. material by using the values from the following table:

	Bulk Specific Gravity
Soft Shale:	2.4
Hard Shale:	2.5
Sandstone:	2.5
Gravel:	2.6
Limestone:	2.7
Red Shale (Iron Bearing)	2.7

- 8.3 Determination of the dry density of the -3/4 in. material and percent field moisture.
- 8.3.1 The dry density of the -3/4 in. material (DB) shall be calculated by the equation on form T-316 or obtained from the tables in attachment 3 of this document, using the specific gravity of the + 3/4 in. material (CH), the total dry density (DA), and the percentage of + 3/4 in. material (CG).
- 8.3.2 Calculate the percent field moisture (MB) by the equation on form T-316.
- 8.4 One-point proctor
- 8.4.1 Place the proctor mold with collar and base attached on the foundation plate. The foundation plate must be firmly seated so that it does not rock when compacting the material. Mix the -3/4 in. material obtained in 8.2.3. Form a specimen by compacting the material in the mold in three approximately equal layers totaling a minimum of 4 1/2 in. and a maximum of 5 in. Each layer is compacted by 25 uniformly distributed blows with the metal rammer dropped freely from a height of 12 in. Stand on the edges of the mold base while compacting the specimen. The rammer must be held vertically.
- 8.4.2 After the specimen has been made, remove the extension collar. The sample must not extend more than 1/2 in. above nor be below the top of the mold. A new specimen shall be made if these tolerances are not met. Carefully trim the material flush with the top of the mold by using the draw knife. Fill any voids in the surface with the fines obtained from the trimming. Use the paint brush to clean the fines from the outside of the mold. Remove the mold base and by holding the mold vertically, visually check the bottom of the mold to determine if the material extends beyond the mold. Do not turn the mold upside down nor trim the bottom. If the material extends beyond the bottom of the mold, perform another specimen with special precautions to seat and tighten the mold to the base.
- 8.4.3 Weigh the soil plus mold (PA). Record the value in the first column of the onepoint proctor section on Form T-316. Do not use the rerun column at this time.
- 8.4.4 Remove the specimen from the mold by using the extruder. Place the specimen back in the remaining -3/4 in. material.

- 8.4.5 Perform the calculations using the equations on the form T-316 to determine the dry density of the one-point proctor (PE).
- 8.5 Determination of the maximum density and optimum moisture
- 8.5.1 To determine the maximum density and optimum moisture, plot the percent field moisture (MB) and the dry density of the one-point proctor (PE) on the maximum density-optimum moisture table (attachment 2). The values at the intersection of the density line and moisture column are the maximum density (DC) and optimum moisture (OA). If there are no values given, the sample is either too wet or too dry to determine the maximum density and optimum moisture. When the plotted point is to the right of the maximum densities and optimum moistures, the sample is too wet and when the plotted value is to the left, the sample is too dry.
- 8.5.2 If the sample is found to be too wet, air dry the -3/4 in. material to decrease the moisture content to between four percentage points below optimum and optimum moisture. The sample is dried by spreading the sample on a non-absorbent surface. Do not dry the sample on a stove. If the sample is too dry, add water to increase the moisture content to between four percentage points below optimum and optimum moisture. Care shall be taken not to over dry or add too much water to the sample.
- 8.5.3 Rerun one-point proctor
- 8.5.3.1 Once the sample has been air dried or water added, thoroughly mix the sample, and perform another one-point proctor according to 8.4.1 8.4.4. Record the data in the second column (rerun) of the one-point proctor section on form T-316.
- 8.5.3.2 Calculate the wet density of the rerun one-point proctor (PE) by using the equations on form T-316.
- 8.5.4 Stove dried moisture
- 8.5.4.1 Scoop out a representative sample between 200 g and 400 g from the sample in 8.5.3.1. The moisture determination can be made in conjunction with making the rerun one-point proctor specimen. Place the sample in the pan for drying samples and determine the sample weight plus pan (SA).
- 8.5.4.2 Adjust the stove flame to a low heat so that the sample will not oxidize during drying. Occasionally stir the sample and be very careful not to lose any of the sample. Once the sample appears dry, weigh the sample, and record the weight. Place the sample back on the stove and dry for approximately two minutes. Weigh the sample and compare the two weights. The weights should be the same (constant). If there is a decrease in weight, reheat the sample again for two minutes and weigh. Continue this process until two consecutive weights are obtained. Record this weight as dry weight plus pan (SD).
- 8.5.4.3 By using the equations on form T-316, calculate the percent moisture (SG).

- 8.5.5 Use the percent moisture (SG) from the stove dried moisture to calculate the dry density of the rerun one-point proctor (PE).
- 8.5.6 Plot the dry density of the rerun one-point proctor (PE) and the percent stove dried moisture (SG) on the maximum density-optimum moisture table to obtain the maximum density (DC) and the optimum moisture (OA).

9. MOISTURE EVALUATION

- 9.1 Obtain the \pm moisture tolerance (OB) from the project's governing specifications. Normally this tolerance is +3/-4.
- 9.2 To determine the acceptable moisture range, add the plus tolerance and subtract the minus tolerance from the optimum moisture. The field moisture (MB) must be within this range for the moisture to meet specifications. If the moisture fails specifications, corrective action is required.

10. DENSITY EVALUATION

- 10.1 Calculate the percent relative density (DE) by the equation on form T-316.
- 10.2 If the percent relative density (DE) is 105 or more, the test results may be in error. Plot the dry density of the -3/4 in. material (DB) and the percent field moisture (MB) on the maximum density-optimum moisture table to check the validity of the test results. The plotted point should fall on or to the left of the darkened blocks (zero air voids). Another method of checking the test results is to calculate the maximum moisture content possible (zero air voids) by the following equation:

Maximum moisture content possible (English) = (62.4/DB - .373)100

When the test results are equal to or less than the above evaluation, the results are acceptable.

10.3 When the conditions in 10.2 are not met, perform another complete test, including a one-point proctor, at a new random location. The checks in 10.2 shall again be made if the test results are 105% or more. If the conditions in 10.2 are still not met, obtain a sample, and determine the specific gravity of both the +3/4 in. and -3/4 in. material, performed separately. Then recalculate the test results using the specific gravity of the +3/4 in. material to determine the dry density of the -3/4 in. material (DB). If the percent relative density is still 105% or more, perform the following calculation using the specific gravity of the -3/4 in. material.

Maximum moisture content = (62.4/DB - 1/Sp. Gr.)100

The field moisture (MB) must be equal to or less than the maximum moisture content (new zero air voids). If the test results still appear to be invalid, an immediate investigation must be conducted.

11. LOT EVALUATION

- 11.1 Five tests are required for a lot evaluation. Each test shall be performed according to previous sections of this procedure.
- 11.2 Calculate the average relative density (x) for the five tests in the lot.
- 11.3 Obtain the target percentage of dry density (T) from the project's governing specifications.
- 11.4 Determine the range (R) of the relative densities (DE) by subtracting the smallest value from the largest.
- 11.5 Calculate the quality index (QL) by using the equation on form T-316.
- 11.6 Enter the table for estimating the percent of a lot within tolerance (attachment 1). Determine the percent within tolerance (DF) which corresponds to the QL value calculated in 11.5 above.
- 11.7 Obtain the minimum percent for 100% pay (DG) from the project's governing specifications.
- 11.8 For a lot to meet specifications for density, the percent within tolerance (DF) must be equal to or greater than the percent for 100% pay (DG). Corrective action is required to bring a failing lot into specification requirements.

12. GENERAL REQUIREMENTS

- 12.1 For a lot to meet specifications, the requirements in 9.2 and 11.8 must be met.
- 12.2 The maximum density, optimum moisture, and percentage of +3/4 in. material may be used for subsequent tests in a lot if the -3/4 in. material does not change. When the material changes, the determination of new control data is required. There must be at least one, one-point proctor, for each lot.
- 12.3 If the test results indicate that the material meets specifications and the material exhibits pumping or displacing action under the weight of construction equipment, obtain a sample of the material and determine the maximum density and optimum moisture according to AASHTO T99, Method C. Until the laboratory test results are obtained, the material in question shall be dried and re-compacted until the pumping stops. The area shall then be retested, and this moisture content used as the upper limit for moisture during the interim period.

MP 207.07.20 OCTOBER 1999 RECONFIRMED: JANUARY 4, 2023 PAGE 10 OF 10

- 12.4 During the compaction of soil cement base course, if the material starts to shear, cease rolling even though the required specifications for compaction are not met. The material is accepted for compaction and the proper documentation in the project's records shall be made.
- 12.5 Independent tests for similarity checks shall be recorded on form T-316. Use only the applicable sections of the form.

01/04/2023

Ronald L. Stanevich, P.E. Director Materials Control, Soils and Testing Division

MP 207.07.20 Steward – Aggregate Section RLS:Mj ATTACHMENTS

MP 207.07.20 – ATTACHMENT 1 OCTOBER 1999 RECONFIRMED: JANUARY 4, 2023

PAGE 1 OF 1

Attachme	ent 1 TABLE FOR ESTIMATIN
Quality Index (QL)	Percent
Positive Values	Within Tolerance
.66	99
.65	98
.62	97
.60	96
.58	95
.57	94
.55	93
.53	92
.51	91
.50	90
.48	89
.46	88
.45	87
.44	86
.42	85
.41	84
.40	83
.38	82
.37	81
.36	80
.34	79
.33	78
.32	77
.30	76
.29	75
.28	74
.27	73
.25	72
.24	71
.23	70
.22	69
.21	68
.19	67
.18	66
.17	65
.16	64
.15	63
.14	62
.13	61
.11	60
.10	59
.09	58
.08	57
.07	56
.06	55
.05	54
.04	53
.02	52
.01	51
.00	50

Attachment I TABLEFOR ESTIMATING FERCENT OF LOT WITHIN TOLERANCE	Attachment 1	TABLE FOR ESTIMATING F	PERCENT OF LOT WITHIN TOLERANCE
--	--------------	------------------------	---------------------------------

Quality Index (QL)	Percent
Negative Values	Within Tolerance
.00	50
.01	49
.02	48
.04	47
.05	46
.06	45
.07	44
.08	43
.09	42
.10	41
.11	40
.13	39
.14	38
.15	37
.16	36
.17	35
.18	34
.19	33
.21	32
.22	31
.23	30
.24	29
.25	28
.27	27
.28	26
.29	25
.30	24
.32	23
.33	22
.34	21
.36	20
.37	19
.38	18
.40	17
.41	16
.42	15
.44	14
.45	13
.46	12
.48	11
.50	10
.51	9
.53	8
.55	7
.57	6
.58	5
.60	4
.62	3
.63	2
.66	1

MP 207.07.20 – ATTACHMENT 2 OCTOBER 1999 RECONFIRMED: JANUARY 4, 2023 PAGE 1 OF 1

···<					MA	4XIM	UM E	ENS	ITY-C	OPTIN	/UM	MOIS	STUR	<u>E TA</u>	BLE						
image image <t< td=""><td></td><td>6</td><td>7</td><td>8</td><td>9</td><td>10</td><td>11</td><td>12</td><td>13</td><td>14</td><td>15</td><td>16</td><td>17</td><td>18</td><td>19</td><td>20</td><td>21</td><td>22</td><td>23</td><td>24</td><td>25</td></t<>		6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
10 10	130																				
142 153 163 163 173 173 183 183 173 183 <td>129</td> <td></td>	129																				
120 9 9 100	128																				
158 199 128 127 128 127 128 129 128 129 128 129 128 129 128 129 128 129 128 129 128 129 <td>127</td> <td></td>	127																				
158 168 179 176 <td>126</td> <td></td> <td>130</td> <td></td> <td></td> <td>126</td> <td></td>	126		130			126															
124 136 <td>125</td> <td>130</td> <td>128</td> <td>127</td> <td>126</td> <td>125</td> <td></td>	125	130	128	127	126	125															
123 170 <td>124</td> <td></td> <td>128</td> <td>126</td> <td>125</td> <td>125</td> <td></td>	124		128	126	125	125															
122 136 134 134 132 122 124 <td>123</td> <td></td> <td>127</td> <td>126</td> <td>124</td> <td>123</td> <td>123</td> <td></td> <td> </td>	123		127	126	124	123	123														
121 125 123 122 121 131 <td>122</td> <td></td> <td>126</td> <td>125</td> <td>124</td> <td>123</td> <td>122</td> <td></td>	122		126	125	124	123	122														
120 121 121 12 13 14	121		126	125	123	122	121														
11 11 12 12 12 12 12 12 12 12 12 12 13 1 <th1< th=""> <th1< th=""> <th1< th=""> <t></t></th1<></th1<></th1<>	120		125	124	122	121	120	120													┝──┦
1 1			11	123	122	120	120	119													<u>├</u> ──┤
117 12 12 12 13 14				122	120	120	119	118													
1 1				12	120	119	118	117	117												
1 1					119	118	117	117	116												
1 1					118	117	116	116	115												┝──┦
1 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 14 14 14 15 16 17 17 17 17 17 17 17 17 17 17 17 </td <td></td> <td></td> <td></td> <td></td> <td>117</td> <td>116</td> <td>116</td> <td>115</td> <td>114</td> <td>114</td> <td></td> <td>├──┤</td>					117	116	116	115	114	114											├ ──┤
1 1 14 14 14 14 14 15 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 15 16 <td></td> <td></td> <td></td> <td></td> <td>13</td> <td></td>					13																
111 14 14 15 15 16 17 18 18 18 18											112										┝──┦
10 14 13 15 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 19 19<																					┟───┦
109 10 110 115 115 116 110 <td></td> <td>┟──┦</td>																					┟──┦
109 0 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 18 19 19 19 10 10 10 10 10 10 10 10 10 10<						15						109									
100 100 100 160 160 160 160 170 177 188 186 105 105 105 105 105 105 105 105 105 105 105 105 107 107 107 108 108 108 108 108 108 105 105 105 105 105 105 105 107 107 107 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 1							15			16											┣───┦
107 1								16	16	16	17	17	107								
100 100 100 100 117 118 1103 103 103 <th1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>16</td><td>17</td><td>17</td><td>17</td><td>17</td><td>17</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td></th1<>								16	17	17	17	17	17								
105 106 107 17 17 17 18 18 18 18 10 104 103								17	17	17	17	18	18	105							
104 1									17	17	18	18	18	18							
103 103 103 104 18 18 18 18 19 102 102 102 102 101 101 101 101 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>17</td> <td>18</td> <td>18</td> <td>18</td> <td>19</td> <td>19</td> <td>102</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									17	18	18	18	19	19	102						
102 1 1 18 19 19 19 20 21 20 20 21 22 22 22 22 22 22 22	103								18	18	19	19	19	19	19	400					
101 101 101 101 101 101 101 100 101 100 101 100 101 101 100 101 101 100 101 100 101 101 100 101 1	102									19	19	19	20	20	20	20					
100 100 101 101 19 20 20 21	101									19	19	20	20	20	20	21					
99 99 91 21 21 21 21 22 22 22 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 121 221 22 <td< td=""><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>19</td><td>20</td><td>20</td><td>21</td><td>21</td><td>21</td><td>21</td><td>21</td><td></td><td></td><td></td><td></td></td<>	100									19	20	20	21	21	21	21	21				
98 Image: Constraint of the constraint	99										20	21	21	21	21	22	22				
97 97 21 21 22 22 22 22 23 96 96 96 96 96 96 97 97 96 97 97 96 98 98 98 98 97 97 96 99 98 97 97 96 99 98 97 97 96 95 95 95 96 99 98 97 97 96 95 95 85 85 95 95 85 22 22 22 23 24	98																				
96 22 22 22 22 23 23 95 95 99 98 97 97 96 95 95 85 94 98 97 96 95 95 85 24 24	97																				
95 22 22 23 23 24 24 94 98 97 96 95 95 94 94	96																				
<u>24</u> 98 97 96 95 95 94 94 94	95																				
	94																			94 24	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		6	7	8	9	10	11	12	13	14	15										25

Attachment 2 MAXIMUM DENSITY-OPTIMUM MOISTURE TABLE

PERCENT MOISTURE

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	INCH MAT	ERIAL W		+3/4 INCH	I MATERI	AL SPECI	FIC GRAV		2.4
	-			PERC	ENT of +	3/4 MAT	ERIAL			\rightarrow
DD	1	2	3	4	5	6	7	8	9	10
80	79	79	78	78	77	77	76	75	75	74
81	80	80	79	79	78	78	77	77	76	75
82	81	81	80	80	79	79	78	78	77	76
83	83	82	81	81	80	80	79	79	78	78
84	84	83	83	82	81	81	80	80	79	79
85	85	84	84	83	83	82	81	81	80	80
86	86	85	85	84	84	83	83	82	81	81
87	87	86	86	85	85	84	84	83	83	82
88	88	87	87	86	86	85	85	84	84	83
89	89	88	88	87	87	86	86	85	85	84
90	90	89	89	88	88	87	87	86	86	85
91	91	90	90	89	89	88	88	87	87	86
92	92	91	91	90	90	89	89	89	88	88
93	93	92	92	91	91	91	90	90	89	89
94	94	93	93	92	92	92	91	91	90	90
95	95	94	94	93	93	93	92	92	91	91
96	96	95	95	95	94	94	93	93	92	92
97	97	96	96	96	95	95	94	94	94	93
98	98	97	97	97	96	96	95	95	95	94
99	99	98	98	98	97	97	97	96	96	95
100	100	99	99	99	98	98	98	97	97	96
101	101	100	100	100	99	99	99	98	98	98
102	102	101	101	101	100	100	100	99	99	99
103	103	102	102	102	101	101	101	100	100	100
104	104	103	103	103	103	102	102	102	101	101
105	105	104	104	104	104	103	103	103	102	102
106	106	105	105	105	105	104	104	104	103	103
107	107	106	106	106	106	105	105	105	105	104
108	108	108	107	107	107	106	106	106	106	105
109	109	109	108	108	108	108	107	107	107	106
110	110	110	109	109	109	109	108	108	108	108
111	111	111	110	110	110	110	109	109	109	109
112	112	112	111	111	111	111	111	110	110	110
113	113	113	112	112	112	112	112	111	111	111
114	114	114	113	113	113	113	113	112	112	112
115	115	115	114	114	114	114	114	114	113	113
116	116	116	116	115	115	115	115	115	114	114
117	117	117	117	116	116	116	116	116	116	115
118	118	118	118	117	117	117	117	117	117	116
119	119	119	119	118	118	118	118	118	118	118
120	120	120	120	120	119	119	119	119	119	119

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	NCH MAT	ERIAL W	ITH THE ·	+3/4 INCF	I MATERI	AL SPECI	FIC GRA	VITY OF	2.4
	-			PERC	ENT of +	3/4 MAT	ERIAL		-	\rightarrow
DD	1	2	3	4	5	6	7	8	9	10
121	121	121	121	121	120	120	120	120	120	120
122	122	122	122	122	121	121	121	121	121	121
123	123	123	123	123	123	122	122	122	122	122
124	124	124	124	124	124	124	123	123	123	123
125	125	125	125	125	125	125	124	124	124	124
126	126	126	126	126	126	126	126	125	125	125
127	127	127	127	127	127	127	127	127	127	126
128	128	128	128	128	128	128	128	128	128	128
129	129	129	129	129	129	129	129	129	129	129
130	130	130	130	130	130	130	130	130	130	130
131	131	131	131	131	131	131	131	131	131	131
132	132	132	132	132	132	132	132	132	132	132
133	133	133	133	133	133	133	133	133	133	133
134	134	134	134	134	134	134	134	134	134	134
135	135	135	135	135	135	135	135	135	135	135
136	136	136	136	136	136	136	136	136	136	136
137	137	137	137	137	137	137	137	137	138	138
138	138	138	138	138	138	138	138	139	139	139
139	139	139	139	139	139	139	140	140	140	140
140	140	140	140	140	140	141	141	141	141	141
141	141	141	141	141	141	142	142	142	142	142
142	142	142	142	142	143	143	143	143	143	143
143	143	143	143	143	144	144	144	144	144	144
144	144	144	144	145	145	145	145	145	145	145
145	145	145	145	146	146	146	146	146	146	146
146	146	146	146	147	147	147	147	147	147	148
147	147	147	147	148	148	148	148	148	149	149
148	148	148	149	149	149	149	149	149	150	150
149	149	149	150	150	150	150	150	150	151	151
150	150	150	151	151	151	151	151	152	152	152
151	151	151	152	152	152	152	152	153	153	153
152	152	152	153	153	153	153	154	154	154	154
153	153	153	154	154	154	154	155	155	155	155
154	154	154	155	155	155	155	156	156	156	156
155	155	155	156	156	156	156	157	157	157	158
156	156	156	157	157	157	158	158	158	158	159
157	157	158	158	158	158	159	159	159	159	160
158	158	159	159	159	159	160	160	160	161	161
159	159	160	160	160	160	161	161	161	162	162
160	160	161	161	161	161	162	162	162	163	163

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	NCH MAT	ERIAL W	ITH THE ·	+3/4 INCH	MATERI	AL SPECI	FIC GRAV		2.4
	-			PERC	ENT of +	3/4 MAT	ERIAL			\rightarrow
DD	11	12	13	14	15	16	17	18	19	20
80	74	73	72	72	71	70	69	69	68	67
81	75	74	73	73	72	71	71	70	69	68
82	76	75	75	74	73	73	72	71	70	70
83	77	76	76	75	74	74	73	72	72	71
84	78	77	77	76	76	75	74	74	73	72
85	79	79	78	77	77	76	75	75	74	73
86	80	80	79	79	78	77	77	76	75	75
87	81	81	80	80	79	78	78	77	76	76
88	83	82	81	81	80	80	79	78	78	77
89	84	83	83	82	81	81	80	80	79	78
90	85	84	84	83	83	82	81	81	80	80
91	86	85	85	84	84	83	83	82	81	81
92	87	87	86	86	85	84	84	83	83	82
93	88	88	87	87	86	86	85	84	84	83
94	89	89	88	88	87	87	86	86	85	85
95	90	90	90	89	89	88	87	87	86	86
96	92	91	91	90	90	89	89	88	88	87
97	93	92	92	91	91	90	90	89	89	88
98	94	93	93	92	92	92	91	91	90	90
99	95	95	94	94	93	93	92	92	91	91
100	96	96	95	95	94	94	93	93	93	92
101	97	97	96	96	96	95	95	94	94	93
102	98	98	98	97	97	96	96	95	95	95
103	99	99	99	98	98	98	97	97	96	96
104	101	100	100	99	99	99	98	98	97	97
105	102	101	101	101	100	100	100	99	99	98
106	103	102	102	102	101	101	101	100	100	100
107	104	104	103	103	103	102	102	102	101	101
108	105	105	104	104	104	103	103	103	102	102
109	106	106	106	105	105	105	104	104	104	103
110	107	107	107	106	106	106	106	105	105	105
111	108	108	108	108	107	107	107	106	106	106
112	110	109	109	109	109	108	108	108	107	107
113	111	110	110	110	110	109	109	109	109	108
114	112	112	111	111	111	111	110	110	110	110
115	113	113	112	112	112	112	112	111	111	111
116	114	114	114	113	113	113	113	113	112	112
117	115	115	115	115	114	114	114	114	114	113
118	116	116	116	116	116	115	115	115	115	115
119	117	117	117	117	117	117	116	116	116	116
120	119	118	118	118	118	118	118	117	117	117

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	NCH MAT	ERIAL W		+3/4 INCH	I MATERI	AL SPECI	FIC GRAV		2.4
	-			PERC	ENT of +	3/4 MATI	ERIAL			\rightarrow
DD	11	12	13	14	15	16	17	18	19	20
121	120	120	119	119	119	119	119	119	118	118
122	121	121	121	120	120	120	120	120	120	120
123	122	122	122	122	121	121	121	121	121	121
124	123	123	123	123	123	123	122	122	122	122
125	124	124	124	124	124	124	124	124	123	123
126	125	125	125	125	125	125	125	125	125	125
127	126	126	126	126	126	126	126	126	126	126
128	128	127	127	127	127	127	127	127	127	127
129	129	129	129	129	129	128	128	128	128	128
130	130	130	130	130	130	130	130	130	130	130
131	131	131	131	131	131	131	131	131	131	131
132	132	132	132	132	132	132	132	132	132	132
133	133	133	133	133	133	133	133	133	133	133
134	134	134	134	134	134	134	134	134	135	135
135	135	135	135	136	136	136	136	136	136	136
136	137	137	137	137	137	137	137	137	137	137
137	138	138	138	138	138	138	138	138	138	138
138	139	139	139	139	139	139	139	139	139	140
139	140	140	140	140	140	140	140	141	141	141
140	141	141	141	141	141	142	142	142	142	142
141	142	142	142	142	143	143	143	143	143	143
142	143	143	144	144	144	144	144	144	144	145
143	144	145	145	145	145	145	145	145	146	146
144	146	146	146	146	146	146	147	147	147	147
145	147	147	147	147	147	148	148	148	148	148
146	148	148	148	148	149	149	149	149	149	150
147	149	149	149	149	150	150	150	150	151	151
148	150	150	150	151	151	151	151	152	152	152
149	151	151	152	152	152	152	153	153	153	153
150	152	152	153	153	153	153	154	154	154	155
151	153	154	154	154	154	155	155	155	156	156
152	154	155	155	155	156	156	156	156	157	157
153	156	156	156	156	157	157	157	158	158	158
154	157	157	157	158	158	158	159	159	159	160
155	158	158	158	159	159	159	160	160	160	161
156	159	159	160	160	160	161	161	161	162	162
157	160	160	161	161	161	162	162	163	163	163
158	161	162	162	162	163	163	163	164	164	165
159	162	163	163	163	164	164	165	165	165	166
160	163	164	164	165	165	165	166	166	167	167

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	NCH MAT	ERIAL W	ITH THE ·	+3/4 INCF	I MATERI	AL SPECI	FIC GRA	VITY OF	2.4
	—					3/4 MATI				→
DD	21	22	23	24	25	26	27	28	29	30
80	66	65	65	64	63	62	61	60	59	58
81	67	67	66	65	64	63	62	61	60	59
82	69	68	67	66	65	65	64	63	62	61
83	70	69	68	68	67	66	65	64	63	62
84	71	71	70	69	68	67	66	65	64	64
85	73	72	71	70	69	69	68	67	66	65
86	74	73	72	72	71	70	69	68	67	66
87	75	74	74	73	72	71	70	70	69	68
88	76	76	75	74	73	73	72	71	70	69
89	78	77	76	75	75	74	73	72	72	71
90	79	78	78	77	76	75	75	74	73	72
91	80	79	79	78	77	77	76	75	74	74
92	81	81	80	79	79	78	77	77	76	75
93	83	82	81	81	80	79	79	78	77	76
94	84	83	83	82	81	81	80	79	79	78
95	85	85	84	83	83	82	81	81	80	79
96	86	86	85	85	84	83	83	82	81	81
97	88	87	87	86	85	85	84	83	83	82
98	89	88	88	87	87	86	86	85	84	84
99	90	90	89	89	88	87	87	86	86	85
100	92	91	91	90	89	89	88	88	87	86
101	93	92	92	91	91	90	90	89	88	88
102	94	94	93	93	92	92	91	90	90	89
103	95	95	94	94	93	93	92	92	91	91
104	97	96	96	95	95	94	94	93	93	92
105	98	97	97	97	96	96	95	95	94	94
106	99	99	98	98	97	97	96	96	95	95
107	100	100	100	99	99	98	98	97	97	96
108 109	102	101 103	101 102	100	100 101	100	99 101	99 100	98 100	98 99
110	103 104	103	102	102 103	101	101 102	101 102	100	100	101
111	104	104	105	103	103	102	102	102	101	101
112	105	105	105	104	104	104	105	103	103	102
112	107	108	100	100	105	105	105	104	104	104
113	108	108	107	107	107	108	107	100	105	105
114	109	110	110	110	108	108	107	107	107	108
116	112	112	111	111	109	110	110	110	110	109
117	112	112	113	112	112	112	112	111	111	109
118	114	114	114	114	112	112	112	113	112	112
119	114	115	115	115	115	115	114	114	114	114
120	117	117	116	116	116	116	116	115	115	115
120	117	117	110	110	110	110	110	110	110	110

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	INCH MAT	ERIAL W					IFIC GRA	VITY OF	2.4
	←	00	00			3/4 MATI			00	→
DD	21	22	23	24	25	26	27	28	29	30
121	118	118	118	118	117	117	117	117	117	116
122	119	119	119	119	119	119	118	118	118	118
123	121	121	120	120	120	120	120	120	119	119
124	122	122	122	122	121	121	121	121	121	121
125	123	123	123	123	123	123	122	122	122	122
126	124	124	124	124	124	124	124	124	124	124
127	126	126	126	125	125	125	125	125	125	125
128	127	127	127	127	127	127	127	127	126	126
129	128	128	128	128	128	128	128	128	128	128
130	130	129	129	129	129	129	129	129	129	129
131	131	131	131	131	131	131	131	131	131	131
132	132	132	132	132	132	132	132	132	132	132
133	133	133	133	133	133	133	133	133	133	134
134	135	135	135	135	135	135	135	135	135	135
135	136	136	136	136	136	136	136	136	136	136
136	137	137	137	137	137	137	138	138	138	138
137	138	138	139	139	139	139	139	139	139	139
138	140	140	140	140	140	140	140	140	141	141
139	141	141	141	141	141	142	142	142	142	142
140	142	142	142	143	143	143	143	143	143	144
141	143	144	144	144	144	144	144	145	145	145
142	145	145	145	145	145	146	146	146	146	146
143	146	146	146	147	147	147	147	147	148	148
144	147	147	148	148	148	148	149	149	149	149
145	149	149	149	149	149	150	150	150	150	151
146	150	150	150	150	151	151	151	152	152	152
147	151	151	152	152	152	152	153	153	153	154
148	152	153	153	153	153	154	154	154	155	155
149	154	154	154	154	155	155	155	156	156	156
150	155	155	155	156	156	156	157	157	157	158
151	156	156	157	157	157	158	158	158	159	159
152	157	158	158	158	159	159	159	160	160	161
153	159	159	159	160	160	160	161	161	162	162
154	160	160	161	161	161	162	162	163	163	164
155	161	162	162	162	163	163	164	164	164	165
156	162	163	163	164	164	165	165	165	166	166
157	164	164	165	165	165	166	166	167	167	168
158	165	165	166	166	167	167	168	168	169	169
159	166	167	167	168	168	169	169	170	170	171
160	167	168	168	169	169	170	170	171	172	172

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	NCH MAT	ERIAL W	ITH THE -	+3/4 INCH	I MATERI	AL SPECI	FIC GRAV	/ITY OF	2.4
	—					3/4 MATE				→
DD	31	32	33	34	35	36	37	38	39	40
80	57	56	54	53	52	51	50	48	47	45
81	58	57	56	55	54	52	51	50	49	47
82	60	59	57	56	55	54	53	51	50	49
83	61	60	59	58	57	56	54	53	52	50
84	63	62	60	59	58	57	56	55	53	52
85	64	63	62	61	60	59	58	56	55	54
86	65	64	63	62	61	60	59	58	57	55
87	67	66	65	64	63	62	61	60	58	57
88	68	67	66	65	64	63	62	61	60	59
89	70	69	68	67	66	65	64	63	62	60
90	71	70	69	68	67	66	65	64	63	62
91	73	72	71	70	69	68	67	66	65	64
92	74	73	72	72	71	70	69	68	67	65
93	76	75	74	73	72	71	70	69	68	67
94	77	76	75	75	74	73	72	71	70	69
95	78	78	77	76	75	74	73	72	71	70
96	80	79	78	78	77	76	75	74	73	72
97	81	81	80	79	78	77	77	76	75	74
98	83	82	81	81	80	79	78	77	76	75
99	84	84	83	82	81	81	80	79	78	77
100	86	85	84	84	83	82	81	81	80	79
101	87	87	86	85	84	84	83	82	81	80
102	89	88	87	87	86	85	85	84	83	82
103	90	89	89	88	87	87	86	85	85	84
104	92	91	90	90	89	88	88	87	86	85
105	93	92	92	91	91	90	89	89	88	87
106	94	94	93	93	92	91	91	90	90	89
107	96	95	95	94	94	93	92	92	91	90
108	97	97	96	96	95	95	94	93	93	92
109	99	98	98	97	97	96	96	95	94	94
110	100	100	99	99	98	98	97	97	96	95
111	102	101	101	100	100	99	99	98	98	97
112	103	103	102	102	101	101	100	100	99	99
113	105	104	104	103	103	102	102	101	101	100
114	106	106	105	105	104	104	104	103	103	102
115	107	107	107	106	106	106	105	105	104	104
116	109	109	108	108	107	107	107	106	106	105
117	110	110	110	109	109	109	108	108	108	107
118	112	112	111	111	111	110	110	110	109	109
119	113	113	113	112	112	112	111	111	111	110
120	115	114	114	114	114	113	113	113	112	112

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	INCH MAT	ERIAL W					IFIC GRA	VITY OF	2.4
						3/4 MATE			~~	→
DD	31	32	33	34	35	36	37	38	39	40
121	116	116	116	115	115	115	115	114	114	114
122	118	117	117	117	117	116	116	116	116	115
123	119	119	119	118	118	118	118	118	117	117
124	121	120	120	120	120	120	119	119	119	119
125	122	122	122	122	121	121	121	121	121	120
126	123	123	123	123	123	123	123	122	122	122
127	125	125	125	125	124	124	124	124	124	124
128	126	126	126	126	126	126	126	126	126	125
129	128	128	128	128	127	127	127	127	127	127
130	129	129	129	129	129	129	129	129	129	129
131	131	131	131	131	131	131	131	131	130	130
132	132	132	132	132	132	132	132	132	132	132
133	134	134	134	134	134	134	134	134	134	134
134	135	135	135	135	135	135	135	135	135	135
135	136	137	137	137	137	137	137	137	137	137
136	138	138	138	138	138	138	138	139	139	139
137	139	139	140	140	140	140	140	140	140	140
138	141	141	141	141	141	141	142	142	142	142
139	142	142	143	143	143	143	143	143	144	144
140	144	144	144	144	144	145	145	145	145	145
141	145	145	146	146	146	146	146	147	147	147
142	147	147	147	147	147	148	148	148	149	149
143	148	148	149	149	149	149	150	150	150	150
144	149	150	150	150	151	151	151	151	152	152
145	151	151	152	152	152	152	153	153	153	154
146	152	153	153	153	154	154	154	155	155	155
147	154	154	154	155	155	156	156	156	157	157
148	155	156	156	156	157	157	158	158	158	159
149	157	157	157	158	158	159	159	160	160	160
150	158	159	159	159	160	160	161	161	162	162
151	160	160	160	161	161	162	162	163	163	164
152	161	162	162	162	163	163	164	164	165	165
153	163	163	163	164	164	165	165	166	167	167
154	164	164	165	165	166	166	167	168	168	169
155	165	166	166	167	167	168	169	169	170	170
156	167	167	168	168	169	170	170	171	171	172
157	168	169	169	170	171	171	172	172	173	174
158	170	170	171	172	172	173	173	174	175	175
159	171	172	172	173	174	174	175	176	176	177
160	173	173	174	175	175	176	177	177	178	179

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

PERCENT of + 3/4 MATERIAL PERCENT of + 3/4 MATERIAL DD 1 2 3 4 5 6 7 8 9 10 80 79 79 78 77 76 76 75 74 74 81 80 79 78 77 77 76 75 75 82 81 81 80 79 78 77 77 76 75 77 84 83 83 82 82 81 81 80 79 78 77 77 76 78 78 77 77 76 88 87 86 80 79 78 78 77 77 76 78 78 77 77 76 78 78 77 77 76 88 83 82 82 81 80 80 83 82 82 81 80 83 83	DENSITY	′ OF -3/4 I	NCH MAT	FERIAL W					FIC GRA	VITY OF	2.5
80 79 79 78 77 76 76 75 74 74 81 80 80 79 78 77 77 76 75 75 82 81 81 80 80 79 78 78 77 77 84 83 82 82 81 81 80 79 78 78 77 84 83 82 82 81 80 79 78 78 77 86 85 84 84 83 82 82 81 80 79 86 85 85 84 84 83 83 82 81 80 87 86 86 85 84 84 83 83 82 81 88 87 86 86 85 84 84 83 83 82 91 90 90 89 89 88 88 87 86 86 85 91 91 90 90 89 88 88 87 86 86 85 91 91 90 90 89 88 88 87 86 86 92 91 91 90 90 89 88 87 86 93 93 92 92 91 91 90 90 89 94 93 93 92 92 91 <	חח	1	2	3					8	0	10
81 80 80 79 79 78 77 77 76 75 75 82 81 81 80 80 79 78 77 77 76 84 83 82 81 81 80 80 79 78 77 77 84 83 83 82 81 80 79 79 78 85 84 84 83 83 82 81 80 80 79 86 85 85 84 84 83 83 82 81 80 80 79 86 85 85 84 84 83 83 82 81 80 80 79 86 85 85 84 84 83 83 82 81 80 80 79 86 85 85 84 84 83 83 82 81 80 80 79 90 90 89 88 88 87 86 86 85 84 84 90 90 89 88 88 87 86 86 85 84 84 91 91 90 90 89 88 88 87 86 86 92 91 91 90 90 89 88 87 86 86 93 93 92 92 91 91											
82 81 81 80 79 78 78 77 77 76 83 82 82 81 80 79 78 77 77 84 83 83 82 82 81 81 80 79 79 85 84 84 83 83 82 82 81 80 80 79 86 85 85 84 84 83 83 82 82 81 80 87 86 86 85 85 84 84 83 83 82 82 81 86 86 85 85 84 84 83 83 89 89 88 87 86 86 85 84 90 90 89 89 88 87 86 86 85 91 91 90 90 89 88 87 86 86 92 92 91 91 90 90 89 88 94 93 93 92 92 91 91 90 96 95 95 94 94 93 93 92 92 91 91 90 90 89 88 87 96 96 95 95 94 94 93 93 92 92 91 91 90 90 99 98 97											
83 82 82 81 81 80 80 79 78 78 77 84 83 83 82 82 81 81 80 79 79 78 85 84 84 83 83 82 82 81 80 80 79 86 85 85 84 84 83 83 82 81 80 87 86 86 85 85 84 84 83 83 82 81 88 88 87 86 86 85 85 84 84 83 83 89 88 88 87 86 86 85 84 84 90 90 89 88 88 87 86 86 85 91 91 90 90 89 88 87 86 86 92 92 91 91 90 90 89 88 87 93 93 92 92 91 91 90 90 89 94 94 93 93 92 92 91 91 90 96 95 95 94 94 93 93 92 92 91 97 97 96 96 95 95 94 94 93 93 93 93 93 98 98 97 97 97 <											
84 83 83 82 82 81 81 80 79 79 78 85 84 84 83 83 82 81 80 79 86 85 84 84 83 83 82 81 80 87 86 86 85 84 84 83 83 82 81 88 88 87 86 86 85 85 84 84 83 83 89 89 88 88 87 86 86 85 85 84 84 90 90 89 89 88 88 87 86 86 85 91 91 90 90 89 89 88 88 87 86 92 92 91 91 90 90 89 89 88 88 87 93 92 92 91 91 90 90 89 89 94 94 93 93 92 92 91 91 90 96 96 95 95 94 94 93 93 92 92 91 97 96 96 95 95 94 94 93 93 93 93 98 98 97 97 96 96 95 95 94 94 99 99 98 88 97 <											
85 84 84 83 83 82 82 81 80 80 79 86 85 85 84 84 83 83 82 81 80 87 86 86 85 85 84 84 83 83 82 81 88 87 86 86 85 85 84 84 83 83 89 89 88 87 86 86 85 85 84 84 90 90 89 89 88 87 86 86 85 85 91 91 90 89 89 88 88 87 86 86 92 92 91 91 90 89 89 88 87 86 93 93 92 92 91 91 90 90 89 88 94 94 93 93 92 92 91 91 90 90 95 94 94 93 93 92 92 91 91 90 96 96 95 95 94 94 93 93 93 93 93 98 98 97 97 97 97 97 97 97 97 90 99 99 98 98 97 97 97 910 100 100 100 100											
86 85 85 84 84 83 83 82 82 81 80 87 86 86 85 85 84 84 83 83 82 81 88 88 87 86 86 85 85 84 84 83 83 89 89 88 88 87 86 86 85 85 84 84 90 90 89 88 88 87 86 86 85 85 91 91 90 90 89 89 88 88 87 86 92 92 91 91 90 90 89 88 88 87 93 93 92 92 91 91 90 90 89 94 94 93 93 92 92 91 91 90 96 96 95 94 94 93 93 92 92 91 97 97 96 96 95 95 94 94 93 93 93 98 98 97 97 97 97 97 96 96 101 101 101 101 100 100 100 99 99 99 98 98 97 97 97 96 96 95 95 95 95 95 100											
87 86 86 85 85 84 84 83 83 82 81 88 88 87 86 86 85 85 84 84 83 83 89 89 88 88 87 86 86 85 85 84 84 83 83 90 90 89 88 88 87 86 86 85 85 91 91 90 90 89 88 88 87 86 86 92 92 91 90 90 89 88 88 87 86 86 92 92 91 90 90 89 88 87 86 86 93 93 92 92 91 90 90 89 88 94 94 93 93 92 92 91 91 90 90 89 95 95 94 94 93 93 92 92 91 91 90 90 89 96 95 95 94 94 93 9											
88 88 87 86 86 85 85 84 84 83 83 89 89 88 88 87 86 86 85 85 84 84 90 90 89 88 88 87 86 86 85 85 84 84 91 91 90 90 89 89 88 88 87 86 86 92 92 91 91 90 90 89 88 88 87 93 93 92 92 91 91 90 90 89 88 88 87 93 93 92 92 91 91 90 90 89 88 88 87 95 94 94 93 93 92 92 91 91 90 90 89 96 95 95 94 94 93 93 92 92 91 91 90 96 96 95 95 94 94 93 93 93 92 92 91 91 90 98 98 97 97 97 97 96 96 95 95 95 94 94 99 99 98 98 97 97 97 96 96 95 95 95 95 95 100 100 100 99 <td></td>											
89 89 88 88 87 86 86 85 85 84 84 90 90 89 89 88 88 87 86 86 85 85 91 91 90 90 89 89 88 88 87 86 86 92 92 91 91 90 90 89 89 88 88 87 93 93 92 92 91 91 90 90 89 89 94 93 93 92 92 91 91 90 89 95 95 94 94 93 93 92 92 91 97 97 96 96 95 95 94 94 93 93 93 98 98 97 97 96 96 95 95 94 94 99 99 98 98 97 97 96 96 101 100 100 99 99 98 98 97 97 102 101 101 101 100 100 99 99 98 103 102 102 102 101 101 100 100 104 104 103 103 103 103 103 103 103 105 104 104 104 104 104 104 104 <											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											86
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	92	92	91	91	90	90	89	89	88	88	87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	94	94	93	93	92	92	91	91	90	90	89
979796969595949493939398989797969695959594949999989897979796969595100100999998989897979696101101100100999999989897971021021011011011001009999999810310310210210110110110010099104104103103102102101101101101105105104104103103103102102101106106105105104104104103103103107107106106105105105105105109109108108108107107107111111110110110110110110109113113113113113113113113113113115115114114114114114113113113113			94	94	93		92	92	91	91	90
98 98 97 97 96 96 95 95 94 94 99 99 98 98 97 97 96 96 95 95 100 100 99 99 98 98 98 97 97 96 96 95 95 101 101 100 100 99 99 99 98 98 97 97 96 96 101 101 101 101 100 100 99 90 99 90 90 90 90 90 100 100 100	96	96	95	95	94	94	93	93	92	92	91
999998989797979696959510010099999898989797969610110110010099999998989797102102101101101100100999999999810310310210210110110110010010099104104103103102102101101101101100105105104104103103103102102101101101106106105105104104104103103103103107107106106105105105104104104108108107107106106106105105105109109108108108108108108108108111111110110110109109109109109113113113113113113113113113113113115115114114114114114114113113113113	97	97	96	96	95	95	94	94	93	93	93
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	98	98	97	97	96	96	95	95	95	94	94
10110110010099999998989797102102101101101100100999999999810310310210210210110110010010099104104103103103102102101101101101105105104104103103103103102102101106106105105105104104103103103103107107106106105105105105104104104108108107107107106106106105105105109109108108108107107107106106110110110110110110110110109109111111111111111111111111111111113113113113113113113113113113113115115114114114114114113113113113	99	99	98	98	97	97	97	96	96	95	95
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	100	99	99	98	98	98	97	97	96	96
10310310210210210110110010010099104104103103103102102101101101100105105104104104103103103102102101106106105105105104104104103103103107107106106106105105105104104108108107107107106106106105105109109108108108107107107106106110110109109109109109109109109111111111111111110110110109109113113113113113113113113113113113115115114114114114114114113113113113	101	101		100	99	99	99	98	98	97	97
104104103103103102102101101101100105105104104104103103103102102101106106105105105104104104103103103107107106106106105105105104104104108108107107107106106106105105105109109108108108107107107107106106110110109109109109108108108107107111111110110110110109109109109109113113113112112111111111111111111114114114114114114113113113113113	102	102	101	101	101	100	100	99	99	99	98
105105104104104103103103102102101106106105105105104104104103103103107107106106106105105105104104104108108107107107106106106105105105109109108108108108107107107106106110110109109109109108108108107107111111110110110110110110110109109113113113112112111111111111111111115115114114114114113113113113113	103	103	102	102	102	101	101	100	100	100	99
106106105105105104104104103103103107107106106106105105105104104104108108107107107106106106105105105109109108108108108107107107106106110110109109109109108108108107107111111110110110109109109109109109112112111111111111111111111111111113113113113113113113113113113113115115114114114114114113113113113	104	104	103	103	103	102	102	101	101	101	100
107107106106106105105105104104104108108107107107106106106105105105109109108108108108107107107106106110110109109109109108108108107107111111110110110110109109109109112112111111111111111111111110113113113112112111111111111111114114113113113113113113113113	105	105	104	104	104	103	103	103	102	102	101
108108107107107106106106105105105109109108108108108107107107106106110110109109109109108108108107107111111110110110110109109109109112112111111111111110110110109113113113112112111111111111111114114113113113113113113113113115115114114114114113113113113	106	106	105	105	105	104	104	104	103	103	103
109109108108108108107107107106106110110109109109109108108108107107111111110110110110109109109109108108112112111111111111110110110109109113113113112112111111111111111114114113113113113113113113113115115114114114114113113113113								105			
110110109109109109108108108107107111111110110110109109109109108108112112111111111111110110110109109113113113112112111111111111111114114113113113113113113113115115114114114114113113113											
111111110110110109109109108108112112111111111111110110110109109113113113112112112111111111111110114114113113113113112112111111111115115114114114114113113113113											
112112111111111110110110109109113113113112112112111111111111110114114114113113113113112112112111115115114114114114113113113113		110			109			108		107	107
113113112112112111111111111110114114113113113113112112112111115115115114114114114113113113113											108
114114113113113112112112111115115114114114114113113113113											
115 115 115 114 114 114 114 113 113 113 113											
116 116 116 115 115 115 115 114 114 114 114		115			114	114		113			113
	116	116	116	115	115	115	115	114	114	114	114
117 117 117 116 116 116 116 115 115 115 115				116	116		116	115			115
118 118 118 117 117 117 117 117 116 116 116	118	118	118	117	117	117	117	117	116	116	116
119 119 119 118 118 118 118 118 117 117 117											
120 120 120 119 119 119 119 119 118 118 118	120	400	100	110	110	110	440	110	110	440	440

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4	INCH MAT	ERIAL W	ITH THE ·	+3/4 INCH	I MATERI	AL SPEC	FIC GRA	VITY OF	2.5
	-				ENT of +	3/4 MATI	ERIAL			→
DD	1	2	3	4	5	6	7	8	9	10
121	121	121	120	120	120	120	120	120	119	119
122	122	122	122	121	121	121	121	121	120	120
123	123	123	123	122	122	122	122	122	122	121
124	124	124	124	123	123	123	123	123	123	123
125	125	125	125	124	124	124	124	124	124	124
126	126	126	126	126	125	125	125	125	125	125
127	127	127	127	127	126	126	126	126	126	126
128	128	128	128	128	128	127	127	127	127	127
129	129	129	129	129	129	128	128	128	128	128
130	130	130	130	130	130	130	129	129	129	129
131	131	131	131	131	131	131	131	130	130	130
132	132	132	132	132	132	132	132	132	131	131
133	133	133	133	133	133	133	133	133	133	133
134	134	134	134	134	134	134	134	134	134	134
135	135	135	135	135	135	135	135	135	135	135
136	136	136	136	136	136	136	136	136	136	136
137	137	137	137	137	137	137	137	137	137	137
138	138	138	138	138	138	138	138	138	138	138
139	139	139	139	139	139	139	139	139	139	139
140	140	140	140	140	140	140	140	140	140	140
141	141	141	141	141	141	141	141	141	141	141
142	142	142	142	142	142	142	142	142	142	143
143	143	143	143	143	143	143	143	143	144	144
144	144	144	144	144	144	144	145	145	145	145
145	145	145	145	145	145	145	146	146	146	146
146	146	146	146	146	146	147	147	147	147	147
147	147	147	147	147	148	148	148	148	148	148
148	148	148	148	148	149	149	149	149	149	149
149	149	149	149	149	150	150	150	150	150	150
150	150	150	150	151	151	151	151	151	151	151
151	151	151	151	152	152	152	152	152	152	153
152	152	152	152	153	153	153	153	153	153	154
153	153	153	153	154	154	154	154	154	155	155
154	154	154	155	155	155	155	155	155	156	156
155	155	155	156	156	156	156	156	157	157	157
156	156	156	157	157	157	157	157	158	158	158
157	157	157	158	158	158	158	158	159	159	159
158	158	158	159	159	159	159	160	160	160	160
159	159	159	160	160	160	160	161	161	161	161
160	160	160	161	161	161	161	162	162	162	163

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

PERCENT of + 3/4 MATERIAL PERCENT of + 3/4 MATERIAL DD 11 12 13 14 15 16 17 18 19 20 80 73 72 71 71 70 69 68 67 66 81 74 73 72 71 71 70 69 68 82 75 74 74 73 72 71 71 70 69 68 83 76 76 75 74 73 72 71 70 69 84 77 77 76 75 74 74 73 72 71 85 79 78 77 76 75 74 74 73 72 74 73 86 80 79 78 77 76 75 74 73 72 81 80 79 78 77 76 <th>DENSITY</th> <th>′ OF -3/4 I</th> <th>NCH MAT</th> <th>ERIAL W</th> <th>ITH THE ·</th> <th>+3/4 INCH</th> <th></th> <th>AL SPECI</th> <th>FIC GRA</th> <th></th> <th>2.5</th>	DENSITY	′ OF -3/4 I	NCH MAT	ERIAL W	ITH THE ·	+3/4 INCH		AL SPECI	FIC GRA		2.5
80 73 72 71 71 70 69 68 67 66 81 74 73 72 71 70 69 68 67 82 75 74 74 73 72 71 71 70 69 68 83 76 76 75 74 73 73 72 71 70 69 84 77 77 76 75 75 74 73 72 72 71 85 79 78 77 76 75 74 73 72 71 73 86 80 79 78 77 76 75 74 73 72 86 80 79 78 77 76 75 74 73 87 81 80 79 78 77 76 75 74 88 82 81 81 80 79 78 77 76 89 83 82 82 81 80 80 79 78 91 85 85 84 83 83 82 81 80 79 92 86 86 85 84 83 83 82 81 81 93 88 87 86 86 85 84 83 83 82 94 89 88 87 86 86 85 84 <		-			PERC	ENT of +	3/4 MAT	ERIAL			→
81 74 73 73 72 71 70 69 68 67 82 75 74 74 73 72 71 71 70 69 68 83 76 76 75 74 73 72 71 70 69 84 77 77 76 75 75 74 73 72 71 85 79 78 77 76 75 74 74 73 72 86 80 79 78 77 76 75 74 74 73 72 86 80 79 78 77 76 75 74 74 73 72 86 80 79 78 77 76 75 74 73 87 81 80 79 79 78 77 76 76 89 83 82 82 81 80 80 79 78 90 84 84 83 82 82 81 80 79 78 91 85 85 84 83 83 82 81 81 80 79 92 86 86 85 85 84 83 83 82 81 81 93 88 87 86 86 85 84 83 83 82 94 93 93 92 92 <	DD	11	12	13	14	15	16	17	18	19	20
82 75 74 74 73 72 71 71 70 69 68 83 76 76 75 74 73 72 71 70 69 84 77 77 76 75 75 74 73 72 72 71 85 79 78 77 76 75 74 74 73 72 86 80 79 78 77 76 75 74 73 72 87 81 80 79 79 78 77 76 75 74 88 82 81 80 79 79 78 77 76 76 89 83 82 82 81 80 80 79 78 77 90 84 84 83 82 82 81 80 79 91 85 85 84 83 82 81 80 79 91 85 85 84 83 83 82 81 81 93 88 87 86 86 85 85 84 83 83 82 94 89 88 88 87 86 86 85 84 83 95 90 89 88 88 87 86 86 97 92 92 91 90 90 89 88 <tr<< td=""><td>80</td><td>73</td><td>72</td><td>71</td><td>71</td><td>70</td><td>69</td><td>68</td><td>67</td><td>67</td><td>66</td></tr<<>	80	73	72	71	71	70	69	68	67	67	66
83 76 76 75 74 73 72 71 70 69 84 77 77 76 75 75 74 73 72 72 71 85 79 78 77 76 76 75 74 74 73 72 86 80 79 78 77 76 75 74 74 73 72 87 81 80 79 79 78 77 77 76 75 74 88 82 81 80 79 79 78 77 76 76 89 83 82 82 81 80 80 79 78 77 90 84 84 83 82 82 81 80 80 79 78 91 85 85 84 83 83 82 82 81 80 79 92 86 86 85 85 84 83 83 82 81 80 93 88 87 86 86 85 84 83 83 82 84 83 94 89 88 87 86 86 85 84 83 83 82 94 89 88 87 86 86 85 84 84 83 95 90 89 89 88 87 86	81	74	73	73	72	71	70	69	69	68	67
84 77 77 76 75 75 74 73 72 72 71 85 79 78 77 76 75 74 74 73 72 86 80 79 78 78 77 76 75 74 73 72 87 81 80 79 79 78 77 77 76 75 74 73 87 81 80 79 79 78 77 76 75 74 88 82 81 80 79 78 77 76 76 89 83 82 82 81 80 80 79 78 90 84 84 83 82 82 81 80 79 91 85 85 84 83 83 82 81 80 79 92 86 86 85 85 84 83 83 82 81 81 93 88 87 86 85 84 83 83 82 81 81 94 89 88 88 87 86 86 85 84 83 83 82 94 89 88 87 86 86 85 84 83 83 82 97 92 92 91 90 90 89 88 88 87 98 <	82	75	74	74	73	72	71	71	70	69	68
85 79 78 77 76 76 75 74 74 73 72 86 80 79 78 77 76 75 75 74 73 87 81 80 79 79 78 77 77 76 75 74 88 82 81 81 80 79 79 78 77 76 76 89 83 82 82 81 80 80 79 78 77 90 84 84 83 82 82 81 80 79 78 91 85 85 84 83 83 82 81 80 79 92 86 86 85 85 84 83 83 82 81 81 93 88 87 86 86 85 84 83 83 82 94 89 88 87 86 86 85 84 83 95 90 89 88 87 86 86 85 97 92 92 91 90 90 89 88 87 96 91 90 90 89 88 87 86 86 97 92 92 91 90 90 89 88 87 98 93 93 92 92 91 91 90 89 <	83	76	76	75	74	73	73	72	71	70	69
86 80 79 78 78 77 76 75 74 73 87 81 80 79 79 78 77 77 76 75 74 88 82 81 81 80 79 79 78 77 76 75 89 83 82 82 81 80 80 79 78 77 76 75 90 84 84 83 82 82 81 80 80 79 78 91 85 85 84 83 83 82 82 81 80 79 92 86 86 85 85 84 83 83 82 81 81 93 88 87 86 86 85 84 83 83 82 94 89 88 88 87 86 86 85 84 83 95 90 89 89 88 88 87 86 86 97 92 92 91 90 90 89 89 88 96 91 90 90 89 89 88 87 98 93 93 92 92 91 91 90 89 99 94 94 93 93 92 92 91 91 100 95 94 94 93 92	84	77	77	76	75	75	74	73	72	72	71
87 81 80 79 79 78 77 77 76 75 74 88 82 81 81 80 79 79 78 77 76 76 89 83 82 82 81 80 80 79 78 77 76 75 90 84 84 83 82 82 81 80 80 79 78 91 85 85 84 83 83 82 82 81 80 79 92 86 86 85 85 84 83 83 82 81 80 79 92 86 86 85 85 84 83 83 82 81 81 93 88 87 86 86 85 84 83 83 82 94 89 88 88 87 86 86 85 84 83 95 90 89 89 88 88 87 86 86 85 97 92 92 91 90 90 89 88 88 87 86 97 92 92 91 90 90 89 88 87 86 97 92 92 91 90 93 93 92 92 91 90 89 98 93 93 93 92	85	79	78	77	76	76	75	74	74	73	72
88 82 81 81 80 79 79 78 77 76 76 89 83 82 82 81 80 79 78 78 77 90 84 84 83 82 82 81 80 79 78 91 85 85 84 83 83 82 82 81 80 79 92 86 86 85 85 84 83 83 82 81 80 79 92 86 86 85 84 83 83 82 81 80 79 93 88 87 86 86 85 84 83 83 82 94 89 88 87 86 86 85 84 83 95 90 89 89 88 87 86 86 97 92 92 91 90 90 89 88 87 96 91 90 90 89 88 88 87 86 97 92 92 91 90 90 89 89 88 99 94 93 93 92 92 91 91 90 100 95 95 94 94 93 92 92 91 91 101 97 96 96 95 95 94 94 93	86	80	79	78	78	77	76	75	75	74	73
89 83 82 82 81 80 80 79 78 77 90 84 84 83 82 82 81 80 79 78 91 85 85 84 83 83 82 82 81 80 79 92 86 86 85 85 84 83 83 82 81 80 79 92 86 86 85 85 84 83 83 82 81 81 93 88 87 86 86 85 84 83 83 82 94 89 88 88 87 86 86 85 84 83 95 90 89 89 88 88 87 86 86 85 97 92 92 91 90 90 89 88 88 87 96 91 90 90 89 89 88 88 87 98 93 93 92 92 91 91 90 89 100 95 94 94 93 93 92 92 91 91 101 97 96 96 95 95 94 94 93 102 98 97 97 96 96 95 95 94 93 93 92 92 91 91 9	87	81	80	79	79	78	77	77	76	75	74
90 84 84 83 82 82 81 80 80 79 78 91 85 85 84 83 83 82 82 81 80 79 92 86 86 85 85 84 83 83 82 81 81 93 88 87 86 86 85 85 84 83 83 82 94 89 88 88 87 86 86 85 84 83 95 90 89 89 88 88 87 86 86 97 92 92 91 90 90 89 88 88 96 91 90 90 89 88 88 87 98 93 93 92 92 91 91 90 89 98 93 93 92 92 91 91 90 89 99 94 93 93 92 92 91 91 90 100 95 95 94 93 92 92 91 91 101 97 96 96 95 95 94 93 103 99 98 98 97 97 96 96 105 101 101 100 100 99 99 98 104 104 104 104 104	88	82	81	81	80	79	79	78	77	76	76
91 85 85 84 83 83 82 82 81 80 79 92 86 86 85 85 84 83 83 82 81 81 93 88 87 86 86 85 85 84 83 83 82 94 89 88 88 87 86 86 85 84 83 83 82 94 89 88 88 87 86 86 85 84 83 83 82 95 90 89 88 88 87 86 86 85 84 96 91 90 90 89 88 88 87 86 86 97 92 92 91 91 90 89 88 87 98 93 93 92 92 91 91 90 89 99 94 93 93 92 92 91 91	89	83	82	82	81	80	80	79	78	78	77
92 86 86 85 85 84 83 83 82 81 81 93 88 87 86 86 85 85 84 83 83 82 94 89 88 88 87 86 86 85 84 84 83 95 90 89 89 88 87 86 86 85 84 84 83 96 91 90 90 89 89 88 88 87 86 86 85 84 96 91 90 90 89 89 88 88 87 86 86 97 92 92 91 90 90 89 89 88 87 98 93 93 92 92 91 91 90 89 100 95 95 94 93 93 92 92 91 91 101 97 96 96 95 <td>90</td> <td>84</td> <td>84</td> <td>83</td> <td>82</td> <td>82</td> <td>81</td> <td>80</td> <td>80</td> <td>79</td> <td>78</td>	90	84	84	83	82	82	81	80	80	79	78
93 88 87 86 86 85 85 84 83 83 82 94 89 88 88 87 86 86 85 84 84 83 95 90 89 89 88 88 87 86 86 85 84 96 91 90 90 89 89 88 88 87 86 86 97 92 92 91 90 90 89 89 88 88 87 98 93 93 92 92 91 91 90 89 89 88 99 94 94 93 93 92 92 91 91 90 89 100 95 95 94 94 93 93 92 92 91 91 90 89 101 97 96 96 95 95 94 94 93 92 92 102 98 97 97 96 96 95 95 94 94 93 103 99 98 98 97 97 96 96 95 95 94 104 100 100 99 99 98 88 97 97 106 102 101 101 100 100 99 99 98 107 103 103 102 102	91	85	85	84	83	83	82	82	81	80	79
94 89 88 88 87 86 86 85 84 84 83 95 90 89 89 88 88 87 86 86 85 84 96 91 90 90 89 89 88 88 87 86 86 85 84 96 91 90 90 89 89 88 88 87 86 86 97 92 92 91 90 90 89 89 88 88 87 98 93 93 92 92 91 91 90 89 88 99 94 94 93 93 92 92 91 91 90 89 100 95 95 94 94 93 92 92 92 91 91 101 97 96 95 95	92	86	86	85	85	84	83	83	82	81	81
95908989888887868685849691909089898888888786869792929190908989898888879893939292919190898988999494939392929191908910095959494939392929191101979696959594949392921029897979696959594949310399989897979696959594104100999998989797969610510110110010099999898979710610210210110110010099999810710310310210210110110010099108104104103103102102101101109106105105104104104103103102102	93	88	87	86	86	85	85	84	83	83	82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	94	89	88	88	87	86	86	85	84	84	83
97929291909089898988888798939392929191908989889994949393929291919089100959594949393929291919089101979696959594949392929110197969695959494939292102989797969695959494931039998989797969695959410410099999998989797969610510110110010099999898979710610210210110110010099999810710310310210210110110010099108104104103103102102102101101109106105105104104104103103102102	95	90	89	89	88	88	87	86	86	85	84
989393929291919089898899949493939292919190891009595949493939292919190891019796969595949493929292102989797969695959494931039998989797969695959410410099999998989797969610510110110010099999898979710610210210110110010099999810710310310210210110110010099108104104103103102102102101101109106105105104104104103103102102	96	91	90	90	89	89	88	88	87	86	86
99949493939292919190891009595949493939292919110197969695959494939292102989797969695959494931039998989797969695959494104100999999989897979696105101101100999998989797106102102101101100100999998107103103102102101101101100100108104104103103102102102101101109106105105104104104103103102102102	97	92	92	91	90	90	89	89	88	88	87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	98	93	93	92	92	91	91	90	89	89	88
10197969695959494939292102989797969695959494931039998989797969695959594104100999999989897979696105101101100100999998989797106102102101101100100100999910710310310210210110110010099108104104103103102102102102101101109106105105104104104103103102102102	99	94	94	93	93	92	92	91	91	90	89
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	95	95	94	94	93	93	92	92	91	91
1039998989797969695959410410099999998989797969610510110110010099999898979710610210210110110010010099999810710310310210210110110110099108104104103103102102102102101101109106105105104104104103103102102102	101	97	96	96	95	95	94	94	93	92	92
10410099999998989797969610510110110010099999898979710610210210110110010010099999810710310310210210210110110010099108104104103103102102102102101101109106105105104104104103103102102	102	98	97	97	96	96	95	95	94	94	93
10510110110010099999898979710610210210110110010010099999810710310310210210210110110010099108104104103103102102102102101101109106105105104104104103103102102	103	99	98	98	97	97	96	96	95	95	94
10610210210110110010010099999810710310310210210210110110010099108104104103103102102102102101101109106105105104104104103103102102	104	100	99	99	99	98	98	97	97	96	96
10710310310210210210110110010099108104104103103102102102101101109106105105104104104103103102102	105	101	101	100	100	99	99	98	98	97	97
108104104103103102102102101101109106105105104104104103103102102	106	102	102	101	101	100	100	100	99	99	98
109 106 105 105 104 104 104 103 103 102 102			103							100	99
			104		103		102	102		101	101
	110	107	106	106	106	105	105	104	104	104	103
111 108 107 107 107 106 106 106 105 105 104											
112 109 109 108 108 108 107 107 106 106 106											
113 110 110 109 109 109 108 108 108 107 107											
114 111 111 110 110 110 109 109 109 108		111	111	111	110	110	110	109	109	109	108
115 112 112 111 111 111 110 110 110 109											
116 113 113 113 113 112 112 112 111 111 111											
117 114 114 114 113 113 113 113 112 112											
118 116 115 115 115 115 114 114 114 113 113								114			113
119 117 117 116 116 116 116 115 115 115 114											
120 118 118 117 117 117 117 116 116 116 116	120	118	118	117	117	117	117	116	116	116	116

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	NCH MAT	ERIAL W	ITH THE ·	+3/4 INCF	I MATERI	AL SPECI	FIC GRA	VITY OF	2.5
	-					3/4 MATE				→
DD	11	12	13	14	15	16	17	18	19	20
121	119	119	119	118	118	118	118	117	117	117
122	120	120	120	120	119	119	119	119	118	118
123	121	121	121	121	120	120	120	120	120	119
124	122	122	122	122	122	121	121	121	121	121
125	123	123	123	123	123	123	122	122	122	122
126	125	124	124	124	124	124	124	124	123	123
127	126	126	125	125	125	125	125	125	125	124
128	127	127	127	126	126	126	126	126	126	126
129	128	128	128	128	128	127	127	127	127	127
130	129	129	129	129	129	129	129	128	128	128
131	130	130	130	130	130	130	130	130	130	129
132	131	131	131	131	131	131	131	131	131	131
133	132	132	132	132	132	132	132	132	132	132
134	134	134	134	133	133	133	133	133	133	133
135	135	135	135	135	135	135	135	134	134	134
136	136	136	136	136	136	136	136	136	136	136
137	137	137	137	137	137	137	137	137	137	137
138	138	138	138	138	138	138	138	138	138	138
139	139	139	139	139	139	139	139	139	139	139
140	140	140	140	140	140	141	141	141	141	141
141	141	142	142	142	142	142	142	142	142	142
142	143	143	143	143	143	143	143	143	143	143
143	144	144	144	144	144	144	144	144	144	144
144	145	145	145	145	145	145	145	145	146	146
145	146	146	146	146	146	146	147	147	147	147
146	147	147	147	147	148	148	148	148	148	148
147	148	148	148	149	149	149	149	149	149	149
148	149	149	150	150	150	150	150	150	151	151
149	150	151	151	151	151	151	151	152	152	152
150	152	152	152	152	152	152	153	153	153	153
151	153	153	153	153	153	154	154	154	154	154
152	154	154	154	154	155	155	155	155	155	156
153	155	155	155	156	156	156	156	156	157	157
154	156	156	156	157	157	157	157	158	158	158
155	157	157	158	158	158	158	159	159	159	159
156	158	159	159	159	159	160	160	160	160	161
157	159	160	160	160	160	161	161	161	162	162
158	161	161	161	161	162	162	162	163	163	163
159	162	162	162	163	163	163	163	164	164	164
160	163	163	163	164	164	164	165	165	165	166

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	OF -3/4 I	INCH MAT	ERIAL W	ITH THE ·	+3/4 INCF	MATERI	AL SPEC	FIC GRAV	/ITY OF	2.5
	-					3/4 MATI				→
DD	21	22	23	24	25	26	27	28	29	30
80	65	64	63	62	61	60	59	58	57	55
81	66	65	64	63	62	61	60	59	58	57
82	67	66	65	65	64	63	62	61	59	58
83	69	68	67	66	65	64	63	62	61	60
84	70	69	68	67	66	65	64	63	62	61
85	71	70	69	68	68	67	66	65	64	63
86	72	72	71	70	69	68	67	66	65	64
87	74	73	72	71	70	69	68	67	66	65
88	75	74	73	72	72	71	70	69	68	67
89	76	75	75	74	73	72	71	70	69	68
90	77	77	76	75	74	73	73	72	71	70
91	79	78	77	76	76	75	74	73	72	71
92	80	79	78	78	77	76	75	74	74	73
93	81	81	80	79	78	77	77	76	75	74
94	82	82	81	80	80	79	78	77	76	75
95	84	83	82	82	81	80	79	79	78	77
96	85	84	84	83	82	81	81	80	79	78
97	86	86	85	84	84	83	82	81	81	80
98	88	87	86	86	85	84	83	83	82	81
99	89	88	88	87	86	86	85	84	83	83
100	90	89	89	88	88	87	86	86	85	84
101	91	91	90	90	89	88	88	87	86	85
102	93	92	91	91	90	90	89	88	88	87
103	94	93	93	92	92	91	90	90	89	88
104	95	95	94	93	93	92	92	91	90	90
105	96	96	95	95	94	94	93	92	92	91
106	98	97	97	96	96	95	94	94	93	93
107	99	98	98	97	97	96	96	95	95	94
108	100	100	99	99	98	98	97	97	96	95
109	101	101	101	100	100	99	99	98	97	97
110	103	102	102	101	101	100	100	99	99	98
111	104	104	103	103	102	102	101	101	100	100
112	105	105	104	104	104	103	103	102	102	101
113	107	106	106	105	105	104	104	104	103	103
114	108	107	107	107	106	106	105	105	104	104
115	109	109	108	108	108	107	107	106	106	105
116	110	110	110	109	109	109	108	108	107	107
117	112	111	111	111	110	110	109	109	109	108
118	113	113	112	112	112	111	111	111	110	110
119	114	114	114	113	113	113	112	112	112	111
120	115	115	115	115	114	114	114	113	113	113

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	OF -3/4	INCH MAT	ERIAL W					IFIC GRAV	VITY OF	2.5
	—	00	00			3/4 MATE			00	→
DD	21	22	23	24	25	26	27	28	29	30
121	117	116	116	116	116	115	115	115	114	114
122	118	118	117	117	117	117	116	116	116	115
123	119	119	119	118	118	118	118	117	117	117
124	120	120	120	120	120	119	119	119	119	118
125	122	122	121	121	121	121	120	120	120	120
126	123	123	123	122	122	122	122	122	121	121
127	124	124	124	124	124	123	123	123	123	123
128	126	125	125	125	125	125	125	124	124	124
129	127	127	127	126	126	126	126	126	126	125
130	128	128	128	128	128	127	127	127	127	127
131	129	129	129	129	129	129	129	129	128	128
132	131	131	130	130	130	130	130	130	130	130
133	132	132	132	132	132	131	131	131	131	131
134	133	133	133	133	133	133	133	133	133	133
135	134	134	134	134	134	134	134	134	134	134
136	136	136	136	136	136	136	136	136	135	135
137	137	137	137	137	137	137	137	137	137	137
138	138	138	138	138	138	138	138	138	138	138
139	139	139	140	140	140	140	140	140	140	140
140	141	141	141	141	141	141	141	141	141	141
141	142	142	142	142	142	142	142	142	143	143
142	143	143	143	143	144	144	144	144	144	144
143	145	145	145	145	145	145	145	145	145	145
144	146	146	146	146	146	146	146	147	147	147
145	147	147	147	147	148	148	148	148	148	148
146	148	148	149	149	149	149	149	149	150	150
147	150	150	150	150	150	150	151	151	151	151
148	151	151	151	151	152	152	152	152	152	153
149	152	152	153	153	153	153	153	154	154	154
150	153	154	154	154	154	154	155	155	155	155
151	155	155	155	155	156	156	156	156	157	157
152	156	156	156	157	157	157	157	158	158	158
153	157	157	158	158	158	159	159	159	159	160
154	158	159	159	159	160	160	160	161	161	161
155	160	160	160	161	161	161	162	162	162	163
156	161	161	162	162	162	163	163	163	164	164
157	162	163	163	163	164	164	164	165	165	165
158	164	164	164	165	165	165	166	166	166	167
159	165	165	165	166	166	167	167	167	168	168
160	166	166	167	167	168	168	168	169	169	170

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	INCH MAT	ERIAL W	ITH THE ·	+3/4 INCH	I MATERI	AL SPECI	IFIC GRAV	VITY OF	2.5
	—					3/4 MATI				→
DD	31	32	33	34	35	36	37	38	39	40
80	54	53	52	50	49	48	46	45	43	42
81	56	55	53	52	51	49	48	47	45	43
82	57	56	55	54	52	51	50	48	47	45
83	59	57	56	55	54	52	51	50	48	47
84	60	59	58	57	55	54	53	51	50	48
85	62	60	59	58	57	56	54	53	52	50
86	63	62	61	60	58	57	56	55	53	52
87	64	63	62	61	60	59	57	56	55	53
88	66	65	64	63	61	60	59	58	56	55
89	67	66	65	64	63	62	61	59	58	57
90	69	68	67	66	65	63	62	61	60	58
91	70	69	68	67	66	65	64	63	61	60
92	72	71	70	69	68	67	65	64	63	62
93	73	72	71	70	69	68	67	66	65	63
94	75	74	73	72	71	70	69	67	66	65
95	76	75	74	73	72	71	70	69	68	67
96	77	77	76	75	74	73	72	71	70	68
97	79	78	77	76	75	74	73	72	71	70
98	80	80	79	78	77	76	75	74	73	72
99	82	81	80	79	78	77	77	76	75	73
100	83	82	82	81	80	79	78	77	76	75
101	85	84	83	82	81	81	80	79	78	77
102	86	85	85	84	83	82	81	80	79	78
103	88	87	86	85	85	84	83	82	81	80
104	89	88	88	87	86	85	84	84	83	82
105	90	90	89	88	88	87	86	85	84	83
106	92	91	91	90	89	88	88	87	86	85
107	93	93	92	91	91	90	89	88	88	87
108	95	94	94	93	92	92	91	90	89	88
109	96	96	95	94	94	93	92	92	91	90
110	98	97	97	96	95	95	94	93	93	92
111	99	99	98	97	97	96	96	95	94	93
112	101	100	100	99	98	98	97	97	96	95
113	102	102	101	100	100	99	99	98	97	97
114	104	103	103	102	101	101	100	100	99	98
115	105	105	104	104	103	102	102	101	101	100
116	106	106	106	105	105	104	104	103	102	102
117	108	107	107	107	106	106	105	105	104	103
118	109	109	109	108	108	107	107	106	106	105
119	111	110	110	110	109	109	108	108	107	107
120	112	112	111	111	111	110	110	109	109	108

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	OF -3/4 I	INCH MAT	ERIAL W	ITH THE ·	+3/4 INCH	I MATERI	AL SPEC	IFIC GRAV	VITY OF	2.5
	-					3/4 MATE				→
DD	31	32	33	34	35	36	37	38	39	40
121	114	113	113	113	112	112	111	111	111	110
122	115	115	114	114	114	113	113	113	112	112
123	117	116	116	116	115	115	115	114	114	113
124	118	118	117	117	117	117	116	116	116	115
125	119	119	119	119	118	118	118	117	117	117
126	121	121	120	120	120	120	119	119	119	118
127	122	122	122	122	121	121	121	121	120	120
128	124	124	123	123	123	123	123	122	122	122
129	125	125	125	125	125	124	124	124	124	123
130	127	127	126	126	126	126	126	126	125	125
131	128	128	128	128	128	127	127	127	127	127
132	130	130	129	129	129	129	129	129	129	128
133	131	131	131	131	131	131	130	130	130	130
134	133	132	132	132	132	132	132	132	132	132
135	134	134	134	134	134	134	134	134	134	133
136	135	135	135	135	135	135	135	135	135	135
137	137	137	137	137	137	137	137	137	137	137
138	138	138	138	138	138	138	138	138	138	138
139	140	140	140	140	140	140	140	140	140	140
140	141	141	141	141	141	142	142	142	142	142
141	143	143	143	143	143	143	143	143	143	143
142	144	144	144	144	145	145	145	145	145	145
143	146	146	146	146	146	146	146	147	147	147
144	147	147	147	147	148	148	148	148	148	148
145	148	149	149	149	149	149	150	150	150	150
146	150	150	150	150	151	151	151	151	152	152
147	151	152	152	152	152	152	153	153	153	153
148	153	153	153	154	154	154	154	155	155	155
149	154	155	155	155	155	156	156	156	156	157
150	156	156	156	157	157	157	157	158	158	158
151	157	157	158	158	158	159	159	159	160	160
152	159	159	159	160	160	160	161	161	161	162
153	160	160	161	161	161	162	162	163	163	163
154	162	162	162	163	163	163	164	164	165	165
155	163	163	164	164	165	165	165	166	166	167
156	164	165	165	166	166	167	167	167	168	168
157	166	166	167	167	168	168	169	169	170	170
158	167	168	168	169	169	170	170	171	171	172
159	169	169	170	170	171	171	172	172	173	173
160	170	171	171	172	172	173	173	174	175	175

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

PERCENT of + 3/4 MATERIAL PERCENT of + 3/4 MATERIAL DD 1 2 3 4 5 6 7 8 9 10 80 79 79 78 77 76 75 74 73 81 80 79 79 78 77 76 75 74 82 81 81 80 79 79 78 77 76 75 84 83 83 82 81 80 80 79 78 77 85 84 84 83 82 82 81 80 79 79 86 85 85 84 83 83 82 81 81 80 87 86 86 85 84 83 83 82 81 81 83 83 82 84 83 83 82 84 83 83 82	DENSITY	′ OF -3/4 I	NCH MAT	ERIAL W	ITH THE ·	+3/4 INCH	IMATERI	AL SPECI	FIC GRA	VITY OF	2.6
80 79 78 77 77 76 75 74 74 81 80 79 78 77 76 75 74 82 81 80 79 78 77 77 76 75 83 82 81 80 79 78 77 85 84 83 82 82 81 80 79 78 85 84 83 82 81 80 80 87 86 85 84 83 82 81 80 89 88 87 86 86 85 84 83 83 82 84 83 83 84 84 83 84 84 83 84 84 83 84 84 83 84 84 84 84 <		-			PERC	ENT of +	3/4 MATI	ERIAL			\rightarrow
81 80 80 79 78 77 76 75 74 82 81 80 79 78 77 77 76 75 83 82 81 80 79 78 77 76 84 83 82 82 81 80 80 79 78 77 85 84 84 83 83 82 81 80 79 79 86 85 85 84 83 83 82 81 81 87 86 86 85 85 84 83 82 81 83 82 81 83 82 81 83 82 81 83 82 81 83 82 81 83 82 81 83 82 81 83 82	DD	1	2	3	4	5	6	7	8	9	10
82 81 80 79 79 78 77 77 76 75 83 82 81 81 80 79 78 77 76 84 83 82 81 80 80 79 78 77 86 85 84 84 83 82 81 80 79 79 86 85 84 84 83 82 81 80 80 87 86 86 85 85 84 83 82 84 83 82 84 83 82 84 83 82 84 83 82 84 83 82 84 83 83 82 84 83 83 82 84 83 83 82 84 83 83 82 84 83	80	79	79	78	77	77	76	75	75	74	73
83 82 82 81 81 80 79 79 78 77 76 84 83 83 82 81 80 79 78 77 85 84 84 83 82 81 81 80 79 79 86 85 85 84 83 82 82 81 80 79 78 77 86 86 85 84 83 82 82 81 80 87 86 86 85 84 83 83 82 81 81 88 87 87 86 86 85 84 83 82 90 89 89 88 88 87 86 86 85 92 91 91 90 90 89 88 88 87 86 86 85 94 94 93 92 92 91 91 94 94 93 92 92 91 91 90 89 88 87 96 96 95 95 94 94 93 92 92 91 91 97 96 96 95 95 94 94 93 92 92 91 91 97 96 96 95 95 94 94 93 92 92 91 91 98 97 97 <	81	80	80	79	78	78	77	76	76	75	74
84 83 82 82 81 80 79 78 77 85 84 84 83 82 81 81 80 79 79 78 87 86 85 84 83 82 81 80 80 87 86 85 84 83 83 83 83 83 83 83 83 83 83 84 83 83 84 83 83 84 83 83 84 83 83 84 83 84 83 84 83 82 84 84 83 82 84 83 82 84 83 82 84 84 83 82 84 83 82 84 83 82 84 83 82 84 83 82 84 83 <td>82</td> <td>81</td> <td>81</td> <td>80</td> <td>79</td> <td>79</td> <td>78</td> <td>77</td> <td>77</td> <td>76</td> <td>75</td>	82	81	81	80	79	79	78	77	77	76	75
85 84 84 83 83 82 81 81 80 79 79 86 85 85 84 83 82 82 81 80 87 86 86 85 84 83 83 82 81 81 88 87 87 86 86 85 84 83 83 82 81 81 89 88 88 87 87 86 86 85 84 84 83 90 89 89 88 88 87 86 85 84 84 83 91 90 89 88 88 87 86 85 84 84 83 92 92 91 91 90 90 89 88 88 87 86 93 92 92 91 91 90 90 89 88 87 94 94 93 92 92 91 91 90 90 89 88 97 97 96 95 94 94 93 92 92 91 91 97 97 96 96 95 95 94 94 93 92 92 91 91 97 97 96 96 95 95 94 94 93 92 92 98 98 97 97 96	83	82	82	81	81	80	79	79	78	77	76
86 85 85 84 84 83 82 82 81 80 80 87 86 86 85 85 84 83 83 82 81 81 88 87 87 86 86 85 84 83 83 82 89 88 88 87 87 86 85 84 84 83 90 89 89 88 88 87 87 86 85 85 84 91 90 90 89 89 88 88 87 86 86 85 92 91 91 90 90 89 89 88 87 86 93 92 92 91 91 90 90 89 88 794 94 93 92 92 91 91 90 90 96 96 95 95 94 94 93 92 92 91 91 97 97 96 96 95 95 94 94 93 92 92 98 98 97 97 96 95 95 94 94 93 99 98 98 97 97 96 95 95 94 94 100 100 100 100 100 100 99 99 98 97 97 96 <t< td=""><td>84</td><td>83</td><td>83</td><td>82</td><td>82</td><td>81</td><td>80</td><td>80</td><td>79</td><td>78</td><td>77</td></t<>	84	83	83	82	82	81	80	80	79	78	77
87 86 86 85 85 84 83 83 82 81 81 88 87 87 86 86 85 84 83 83 82 89 89 89 88 87 87 86 85 84 83 90 89 89 88 87 87 86 85 85 84 91 90 90 89 89 88 87 86 86 85 84 92 91 91 90 90 89 88 88 87 86 86 85 92 91 91 90 90 89 88 88 87 86 86 85 94 94 93 92 92 91 90 90 89 88 87 86 94 94 93 92 92 91 90 90 89 88 87 97 96 96 95 95 94 94 93 92 92 91 91 97 97 96 96 95 95 94 94 93 92 92 91 91 90 98 97 97 96 96 95 95 94 94 93 92 92 91 91 90 98 97 97 96 96 95 94 94 93 </td <td>85</td> <td>84</td> <td>84</td> <td>83</td> <td>83</td> <td>82</td> <td>81</td> <td>81</td> <td>80</td> <td>79</td> <td>79</td>	85	84	84	83	83	82	81	81	80	79	79
88 87 87 86 86 85 85 84 83 83 82 89 88 88 87 87 86 85 84 84 83 90 90 89 88 88 87 86 85 85 84 91 90 90 89 88 88 87 86 86 85 84 91 90 90 89 88 88 87 86 86 85 92 91 91 90 90 89 88 88 87 86 93 92 92 91 91 90 90 89 88 87 94 94 93 92 92 91 91 90 90 89 89 95 94 94 93 92 92 91 91 90 90 96 95 95 94 93 92 92 91 91 97 97 96 96 95 95 94 93 99 98 98 97 97 96 96 95 95 101 101 100 100 99 98 98 97 97 96 96 95 95 94 93 92 92 91 91 90 102 102 101 101 100 100 100 <td>86</td> <td>85</td> <td>85</td> <td>84</td> <td>84</td> <td>83</td> <td>82</td> <td>82</td> <td>81</td> <td>80</td> <td>80</td>	86	85	85	84	84	83	82	82	81	80	80
89 88 88 87 87 86 86 85 84 84 83 90 89 89 88 88 87 87 86 85 84 91 90 90 89 89 88 88 87 86 86 85 92 91 91 90 90 89 88 88 87 86 93 92 92 91 91 90 90 89 88 87 94 94 93 92 92 91 91 90 90 89 88 87 94 94 93 92 92 91 91 90 90 88 87 93 92 92 91 91 93 92 92 91 91 93 92 92 93 93 92 92 94 93 92 92	87	86	86	85	85	84	83	83	82	81	81
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	88	87	87	86	86	85	85	84	83	83	82
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	89	88	88	87	87	86	86	85	84	84	83
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	90	89	89	88	88	87	87	86	85	85	84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	91	90	90	89	89	88	88	87	86	86	85
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	92	91	91	90	90	89	89	88	88	87	86
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	93	92	92	91	91	90	90	89	89	88	87
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	94	94	93	92	92	91	91	90	90	89	89
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	95	95	94	94	93	92	92	91	91	90	90
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	96	96	95	95	94	94	93	92	92	91	91
99 99 98 98 97 97 96 96 95 95 94 100 100 99 99 98 98 97 97 96 96 95 101 101 100 100 99 99 98 98 97 97 96 102 102 101 101 100 100 99 99 98 98 97 103 103 102 102 101 101 100 100 99 99 99 104 104 103 103 102 102 101 101 100 100 105 104 104 103 103 102 102 101 101 106 106 106 105 105 104 104 103 103 107 106 106 105 105 105 104 103	97	97	96	96	95	95	94	94	93	92	92
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	98	98	97	97	96	96	95	95	94	94	93
101 101 100 100 99 99 98 98 97 97 96 102 102 101 101 100 100 99 99 98 98 97 103 103 102 102 101 101 100 100 99 99 104 104 103 103 102 102 101 101 100 100 105 104 104 103 103 102 102 101 101 100 100 106 106 105 105 104 104 103 103 102 102 101 101 106 106 105 105 104 104 103 103 103 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102	99	99	98	98	97	97	96	96	95	95	94
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	100	99	99	98	98	97	97	96	96	95
103 103 102 102 101 101 100 100 100 99 99 104 104 103 103 102 102 102 101 101 100 100 105 105 104 104 103 103 103 102 102 101 101 106 106 105 105 104 104 104 103 103 102 102 101 101 106 106 105 104 104 104 103 103 102 102 107 107 106 106 105 105 104 104 103 103 108 108 107 107 106 106 106 105 105 104 109 109 109 108 108 107 107 106 111 111 110 110 110 109<	101	101	100	100	99	99	98	98	97	97	96
104104103103102102102101101100100105105104104103103103102102101101106106105105104104104103103102102107107106106106105105104104103103108108107107107106106105105104109109108108107107106106106105110110109109109108108107107106111111110110109109109109109109112111111111110110110110110114113113112112111111111111115115114114114113113112112116116116116116116116116116116117117117117117117117117117116	102	102	101	101	100	100	99	99	98	98	97
105105104104103103103102102101101106106105105104104104103103102102107107106106106105105104104103103108108107107107106106105105105104109109108108107107106106106106105110110109109109108108107107106111111110110109109109109109109112112111111110110110110110114113113113112112111111111115115114114114113113112112116116116116116116116116116116117117117117117117117117117116	103	103	102	102	101	101	100	100	100	99	99
106106105105104104104103103102102107107106106106105105104104103103108108107107107106106105105105104109109108108108107107106106106106110110109109109108108107107106111111110110109109109108108107112112111111110110110109109109113113112112111111111111111114114113113112112111111111115115115115114114113113112112116116115115115115114114114114118118117117117116116116115115119119119118118118117117117117116	104	104	103	103	102	102	102	101	101	100	100
107107106106106105105104104103103108108107107107106106105105105104109109108108107107106106106106105110110109109109108108108107107106111111110110110109109109109109112112111111110110110109109113113112112111111111110110114114113113112112112111111115115114114114113113112112116116115115115114114114118118117117117116116116115119119119118118118117117117117117	105	105	104	104	103	103	103	102	102	101	101
108108107107107106106105105105104109109108108108107107106106106105110110109109109108108108107107106111111110110110109109109109108108112112111111110110110110109109113113112112111111111110110114114113113112112111111111115115114114114113113112112116116115115115114114114114118118117117117116116116115119119119118118118117117117117117	106	106	105	105	104	104	104	103	103	102	102
109109108108108107107106106106105110110109109109108108108107107106111111110110110109109109109108108107112112111111111110110110109109109109113113112112111111111110110110110114114113113113112112111111111111115115114114114113113112112112116116115115115114114114114114118118117117117116116116115119119119118118118117117117117117	107	107	106	106	106	105	105	104	104	103	103
110110109109109108108108107107106111111110110109109109109108108107112112111111111110110110109109109109113113112112112111111111110110110114114113113113112112111111111111115115114114114113113112112112116116115115115114114114113113117117116116116116116116116118118117117117117117117117116	108	108	107	107	107	106	106	105	105	105	104
111111110110109109109109108108107112112111111111110110110109109109113113112112112111111111110110110114114113113113112112112111111111115115114114114114113113112112116116115115115115114114114114117117116116116115115115115119119119118118118117117117117	109	109	108	108	108	107	107	106	106	106	105
112112111111111110110109109109113113112112112111111111110110110114114113113113112112112111111111111115115114114114114113113112112116116115115115115114114113113117117116116116115115115114114118118117117117117117117116119119118118118117117117117117	110	110	109	109	109	108	108	108	107	107	106
113113112112112111111111110110110114114113113113112112112111111111115115114114114114113113113112112116116115115115115114114114113113117117116116116116115115114114118118117117117117116116116115119119118118118117117117117116	111	111	110	110	110	109	109	109	108	108	107
114114113113112112112111111111115115114114114114113113113112112116116115115115115114114114113113113117117116116116116115115115114114118118117117117117116116116115119119118118118117117117117116	112	112	111	111	111	110	110	110	109	109	109
115115114114114113113113112112116116115115115115114114114113113117117116116116116115115115114114118118117117117117116116116116115119119119118118118117117117117116	113	113	112	112	112	111	111	111	110	110	110
116116115115115114114114113113117117116116116116115115115114114118118117117117117116116116116115119119119118118118117117117117117116	114	114	113	113	113	112	112	112	111	111	111
117117116116116115115115114114118118117117117116116116116115119119119118118118117117117117116	115	115	114	114	114	114	113	113	113	112	112
118118117117117116116116116115119119118118118117117117117116	116	116	115	115	115	115	114	114	114	113	113
119 119 119 118 118 118 117 117 117 117 116	117	117	116	116	116	116	115	115	115	114	114
	118	118	117	117	117	117	116	116	116	116	115
120 120 120 119 119 119 119 118 118 118 117	119	119	119	118	118	118	117	117	117	117	116
	120	120	120	119	119	119	119	118	118	118	117

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4	INCH MAT	ERIAL W	ITH THE ·	+3/4 INCH	I MATERI	AL SPEC	IFIC GRA	VITY OF	2.6
	-					3/4 MAT	ERIAL			
DD	1	2	3	4	5	6	7	8	9	10
121	121	121	120	120	120	120	119	119	119	119
122	122	122	121	121	121	121	120	120	120	120
123	123	123	122	122	122	122	122	121	121	121
124	124	124	123	123	123	123	123	122	122	122
125	125	125	124	124	124	124	124	123	123	123
126	126	126	125	125	125	125	125	125	124	124
127	127	127	127	126	126	126	126	126	125	125
128	128	128	128	127	127	127	127	127	127	126
129	129	129	129	128	128	128	128	128	128	127
130	130	130	130	129	129	129	129	129	129	129
131	131	131	131	131	130	130	130	130	130	130
132	132	132	132	132	131	131	131	131	131	131
133	133	133	133	133	132	132	132	132	132	132
134	134	134	134	134	134	133	133	133	133	133
135	135	135	135	135	135	135	134	134	134	134
136	136	136	136	136	136	136	135	135	135	135
137	137	137	137	137	137	137	137	136	136	136
138	138	138	138	138	138	138	138	138	138	137
139	139	139	139	139	139	139	139	139	139	139
140	140	140	140	140	140	140	140	140	140	140
141	141	141	141	141	141	141	141	141	141	141
142	142	142	142	142	142	142	142	142	142	142
143	143	143	143	143	143	143	143	143	143	143
144	144	144	144	144	144	144	144	144	144	144
145	145	145	145	145	145	145	145	145	145	145
146	146	146	146	146	146	146	146	146	146	146
147	147	147	147	147	147	147	147	147	147	147
148	148	148	148	148	148	148	148	148	149	149
149	149	149	149	149	149	149	149	150	150	150
150	150	150	150	150	150	150	151	151	151	151
151	151	151	151	151	151	152	152	152	152	152
152	152	152	152	152	152	153	153	153	153	153
153	153	153	153	153	154	154	154	154	154	154
154	154	154	154	154	155	155	155	155	155	155
155	155	155	155	156	156	156	156	156	156	156
156	156	156	156	157	157	157	157	157	157	157
157	157	157	157	158	158	158	158	158	158	159
158	158	158	158	159	159	159	159	159	160	160
159	159	159	160	160	160	160	160	160	161	161
160	160	160	161	161	161	161	161	161	162	162

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

80 72 71 71 70 69 68 67 66 65 66 81 73 73 72 71 70 69 68 67 67 66 65 66 81 73 73 72 71 70 69 68 67 67 66 82 74 74 73 72 71 70 70 69 68 67 67 66 83 76 75 74 73 72 72 71 70 69 68 67 84 77 76 75 74 73 72 71 70 69 68 85 78 77 76 75 74 73 72 71 70 69 86 79 78 78 77 76 75 74 73 72 71 77	20 64 66 67 68 69 71 72
80 72 71 71 70 69 68 67 66 65 66 81 73 73 72 71 70 69 68 67 67 66 82 74 74 73 72 71 70 70 69 68 67 67 66 83 76 75 74 73 72 71 70 69 68 67 69 68 67 69 68 67 69 68 66 65 68 67 69 68 67 69 68 67 69 68 67 69 68 67 69 68 67 69 68 67 69 68 67 69 68 69 68 67 69 68 67 69 68 67 68 67 68 67 68 67 68 67 68 67 68 67 68 67 68 68 67 71 70	64 66 67 68 69 71
81 73 73 72 71 70 69 68 67 67 66 82 74 74 73 72 71 70 70 69 68 67 67 66 83 76 75 74 73 72 71 70 69 68 66 84 77 76 75 74 74 73 72 71 70 69 68 66 85 78 77 76 75 74 74 73 72 71 70 69 66 86 79 78 78 77 76 75 74 73 72 71 70 69 66	6 7 8 9 7
82 74 74 73 72 71 70 70 69 68 66 83 76 75 74 73 72 72 71 70 69 68 66 83 76 75 74 73 72 71 70 69 66 84 77 76 75 74 74 73 72 71 70 69 66 85 78 77 76 76 75 74 73 72 71 70 66 86 79 78 78 77 76 75 74 73 72 71 77	57 58 59 71
83767574737272717069698477767574747372717069857877767675747372717069867978787776757473727177	8 9 1
8477767574747372717066857877767675747372717867978787776757474737	i9 '1
857877767675747372717867978787776757474737	'1
86 79 78 78 77 76 75 74 74 73 7	
	2
87 80 79 79 78 77 76 76 75 74 7	
	'3
88 81 81 80 79 78 78 77 76 75 7	'4
89 82 82 81 80 80 79 78 77 76 7	6
90 83 83 82 81 81 80 79 78 78 7	7
91 85 84 83 83 82 81 80 80 79 7	'8
92 86 85 84 84 83 82 82 81 80 7	'9
93 87 86 86 85 84 84 83 82 81 8	51
94 88 87 87 86 85 85 84 83 83 8	32
95 89 88 88 87 87 86 85 85 84 8	3
96 90 90 89 88 88 87 86 86 85 8	4
97 91 91 90 90 89 88 88 87 86 8	6
98 92 92 91 91 90 89 88 87 8	57
99 94 93 92 92 91 91 90 89 89 8	8
100 95 94 94 93 92 92 91 91 90 8	9
101 96 95 95 94 94 93 92 92 91 9)1
102 97 96 96 95 95 94 94 93 92 9	2
103 98 98 97 97 96 95 95 94 94 9	3
104 99 99 98 98 97 97 96 95 95 9	4
105 100 100 99 99 98 98 97 97 96 9	6
106 101 101 101 100 100 99 98 98 97 9)7
	8
108 104 103 103 102 102 101 101 100 100 9	9
	01
110 106 106 105 105 104 104 103 103 102 10	02
111 107 107 106 106 105 105 104 104 104 10	03
112 108 108 107 107 107 106 106 105 105 10	04
113 109 109 109 108 108 107 107 106 106 10	06
	07
115 112 111 111 110 110 110 109 109 108 10	08
116 113 112 112 112 111 111 111 110 110 10	09
	11
118 115 115 114 114 114 113 113 113 112 1 ⁴	12
	13
120 117 117 117 116 116 116 115 115 115 1 ⁻	14

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	NCH MAT	ERIAL W	ITH THE ·	+3/4 INCH	I MATERI	AL SPEC	IFIC GRAV	VITY OF	2.6
	-			PERC	ENT of +	3/4 MATE	ERIAL			→
DD	11	12	13	14	15	16	17	18	19	20
121	118	118	118	117	117	117	117	116	116	116
122	119	119	119	119	118	118	118	117	117	117
123	121	120	120	120	120	119	119	119	118	118
124	122	121	121	121	121	120	120	120	120	119
125	123	123	122	122	122	122	121	121	121	121
126	124	124	123	123	123	123	123	122	122	122
127	125	125	125	124	124	124	124	124	123	123
128	126	126	126	126	125	125	125	125	125	124
129	127	127	127	127	127	126	126	126	126	126
130	128	128	128	128	128	128	127	127	127	127
131	130	129	129	129	129	129	129	128	128	128
132	131	131	130	130	130	130	130	130	129	129
133	132	132	132	131	131	131	131	131	131	131
134	133	133	133	133	132	132	132	132	132	132
135	134	134	134	134	134	134	133	133	133	133
136	135	135	135	135	135	135	135	135	134	134
137	136	136	136	136	136	136	136	136	136	136
138	137	137	137	137	137	137	137	137	137	137
139	139	138	138	138	138	138	138	138	138	138
140	140	140	140	140	140	139	139	139	139	139
141	141	141	141	141	141	141	141	141	141	141
142	142	142	142	142	142	142	142	142	142	142
143	143	143	143	143	143	143	143	143	143	143
144	144	144	144	144	144	144	144	144	144	144
145	145	145	145	145	145	145	145	145	146	146
146	146	146	146	147	147	147	147	147	147	147
147	148	148	148	148	148	148	148	148	148	148
148	149	149	149	149	149	149	149	149	149	149
149	150	150	150	150	150	150	150	150	150	151
150	151	151	151	151	151	151	151	152	152	152
151	152	152	152	152	152	153	153	153	153	153
152	153	153	153	154	154	154	154	154	154	154
153	154	154	155	155	155	155	155	155	155	156
154	155	156	156	156	156	156	156	156	157	157
155	157	157	157	157	157	157	158	158	158	158
156	158	158	158	158	158	159	159	159	159	159
157	159	159	159	159	160	160	160	160	160	161
158	160	160	160	160	161	161	161	161	162	162
159	161	161	161	162	162	162	162	163	163	163
160	162	162	163	163	163	163	164	164	164	164

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

PERCENT of + 3/4 MATERIAL PERCENT of + 3/4 MATERIAL DD 21 22 23 24 25 26 27 28 29 30 80 63 62 61 60 59 58 57 56 55 82 66 65 64 63 62 61 60 58 57 56 84 68 67 66 65 64 63 62 61 60 59 57 84 68 67 66 65 64 63 62 61 60 59 57 84 68 67 66 65 64 63 62 64 63 62 86 71 70 69 68 67 66 65 64 63 62 66 65 89 75 74 73 72 71 70 69 77 76 75 </th <th>DENSITY</th> <th>′ OF -3/4 I</th> <th>NCH MAT</th> <th>ERIAL W</th> <th>ITH THE</th> <th>+3/4 INCH</th> <th>IMATERI</th> <th>AL SPECI</th> <th>FIC GRA</th> <th>/ITY OF</th> <th>2.6</th>	DENSITY	′ OF -3/4 I	NCH MAT	ERIAL W	ITH THE	+3/4 INCH	IMATERI	AL SPECI	FIC GRA	/ITY OF	2.6
80 63 62 61 60 59 58 57 56 53 81 65 64 63 61 60 59 58 57 56 82 66 65 64 63 62 61 60 59 57 84 68 67 66 65 64 63 62 61 60 59 85 70 69 68 67 66 65 64 63 61 60 86 71 70 69 68 67 66 65 64 63 62 87 72 71 70 69 68 67 66 65 64 63 88 73 73 72 71 70 69 68 67 66 65 89 75 74 73 72 71 70 69 68 67 66 90 76 75 74 73 72 71 70 69 68 67 66 91 77 76 75 74 73 72 71 70 69 68 67 66 92 79 78 77 76 75 74 73 72 71 70 93 80 79 78 77 76 75 74 73 72 71 70 94 81 80		-									\rightarrow
81 65 64 63 61 60 59 58 57 56 55 82 66 65 64 63 62 61 60 59 57 84 68 67 66 65 64 63 62 61 60 59 85 70 69 68 67 66 65 64 63 61 60 86 71 70 69 68 67 66 65 64 63 62 87 72 71 70 69 68 67 66 65 64 63 88 73 73 72 71 70 69 68 67 66 90 76 75 74 73 72 71 70 69 68 67 91 77 76 75 74 73 72 71 70 69 92 79 78 77 76 75 74 73 72 71 70 93 80 79 78 77 76 75 74 73 72 71 70 94 81 80 79 78 77 76 75 74 73 72 94 81 80 79 78 77 76 75 74 73 72 96 84 83 82 81 80	DD	21	22	23	24	25	26	27	28	29	30
82 66 65 64 63 62 61 60 58 57 56 83 67 66 65 64 63 62 61 60 59 57 84 68 67 66 65 64 63 61 60 59 57 85 70 69 68 67 66 65 64 63 62 86 71 70 69 68 67 66 65 64 63 87 72 71 70 69 68 67 66 65 90 76 75 74 73 72 71 70 69 68 90 76 75 74 73 72 71 70 69 68 67 91 77 76 76 75 74 73 72 71 70 69 92 79 78 77 76 75 74 73 72 71 70 69 93 80 79 78 77 76 75 74 73 72 94 81 80 79 78 77 76 75 75 96 84 83 82 81 80 79 78 77 97 85 84 83 82 81 80 79 78 77 85 84 83 <	80	63	62	61	60	59	58	57	56	54	53
83 67 66 65 64 63 62 61 60 59 57 84 68 67 66 65 64 63 62 61 60 59 85 70 69 68 67 66 65 64 63 62 86 71 70 69 68 67 66 65 64 63 87 72 71 70 69 68 67 66 65 64 63 89 75 74 73 72 71 70 69 68 67 66 90 76 75 74 73 72 71 70 69 68 67 90 76 76 75 74 73 72 71 70 69 68 67 91 77 76 76 75 74 73 72 71 70 69 92 79 78 77 76 75 74 73 72 71 70 93 80 79 78 77 76 75 74 73 72 71 70 94 81 80 79 78 77 76 75 74 73 95 82 82 81 80 79 78 77 76 97 85 84 83 82 81 80	81	65	64	63	61	60	59	58	57	56	55
84 68 67 66 65 64 63 62 61 60 59 85 70 69 68 67 66 65 64 63 61 60 86 71 70 69 68 67 66 65 64 63 62 87 72 71 70 69 68 67 66 65 64 63 88 73 73 72 71 70 69 68 67 66 90 76 75 74 73 72 71 70 69 68 67 91 77 76 76 75 74 73 72 71 70 69 92 79 78 77 76 75 74 73 72 71 70 93 80 79 78 77 76 75	82	66	65	64	63	62	61	60	58	57	56
85 70 69 68 67 66 65 64 63 62 87 72 71 70 69 68 67 66 65 64 63 62 87 72 71 70 69 68 67 66 65 64 63 88 73 73 72 71 70 69 68 67 66 90 76 75 74 73 72 71 70 69 68 67 91 77 76 76 75 74 73 72 71 70 69 93 80 79 78 77 76 75 74 73 72 94 81 80 79 78 77 76 75 74 73 72 76 75 74 73 72 76 75 75 76 75	83	67	66	65	64	63	62	61	60	59	57
86 71 70 69 68 67 66 65 64 63 62 87 72 71 70 69 68 67 66 65 64 63 88 73 73 72 71 70 69 68 67 66 89 75 74 73 72 71 70 69 68 67 66 90 76 75 74 73 72 71 70 69 68 67 91 77 76 75 74 73 72 71 70 69 92 79 78 77 76 75 74 73 72 71 70 93 80 79 78 77 76 75 74 73 72 71 70 94 81 80 79 78 77 76 75 74 73 72 94 81 80 79 78 77 76 75 74 73 95 82 81 80 79 78 77 76 97 85 84 83 82 81 80 79 78 97 85 84 83 82 81 80 79 78 97 86 85 84 83 82 81 80 79 98 86 85 84 <	84	68	67	66	65	64	63	62	61	60	59
87 72 71 70 69 68 67 66 65 64 63 88 73 73 72 71 70 69 68 67 66 90 76 75 74 73 72 71 70 69 68 67 91 77 76 75 74 73 72 71 70 69 68 67 91 77 76 75 74 73 72 71 70 69 92 79 78 77 76 75 74 73 72 71 70 93 80 79 78 77 76 75 74 73 72 94 81 80 79 79 78 77 76 75 74 73 95 82 82 81 80 79 78 77 76 75 74 73 97 85 84 83 82 81 80 79 78 77 76 97 85 84 83 82 81 80 79 78 77 98 86 85 84 83 82 81 80 79 78 90 89 88 87 86 86 85 84 83 82 100 89 88 87 86 86 85 84	85	70	69	68	67	66	65	64	63	61	60
88 73 73 72 71 70 69 68 67 66 65 89 75 74 73 72 71 70 69 68 67 91 77 76 75 74 73 72 71 70 69 68 67 91 77 76 75 74 73 72 71 70 69 92 79 78 77 76 75 74 73 72 71 70 93 80 79 78 77 76 75 74 73 72 94 81 80 79 79 78 77 76 75 74 73 95 82 82 81 80 79 78 77 76 75 75 96 84 83 82 81 80 79 78 77 76 97 85 84 83 82 81 80 79 78 77 98 86 85 84 83 82 81 80 79 78 99 87 87 86 86 85 84 83 82 81 80 100 89 88 87 86 86 85 84 83 82 81 80 100 89 89 89 89 89 89 89 <td< td=""><td>86</td><td>71</td><td>70</td><td>69</td><td>68</td><td>67</td><td>66</td><td>65</td><td>64</td><td>63</td><td>62</td></td<>	86	71	70	69	68	67	66	65	64	63	62
89 75 74 73 72 71 70 69 68 67 66 90 76 75 74 73 72 71 70 69 68 67 91 77 76 76 75 74 73 72 71 70 69 92 79 78 77 76 75 74 73 72 71 70 69 92 79 78 77 76 75 74 73 72 71 70 93 80 79 78 77 76 75 74 73 72 94 81 80 79 78 77 76 75 74 73 72 76 75 74 73 72 76 75 74 73 72 76 75 74 73 72 76 75 74 73	87	72	71	70	69	68	67	66	65	64	63
907675747372717069686791777676757473727170699279787776757473727170699380797877767574737271709481807979787776757473729582828180797877767575759684838281808079787776978584838281807978777698868585848382818079787799878786858483828180797877988685858483828180797877998787868685848382818079998787868685848382818010089888786868584838382101908988878686858586 </td <td>88</td> <td>73</td> <td>73</td> <td>72</td> <td>71</td> <td>70</td> <td>69</td> <td>68</td> <td>67</td> <td>66</td> <td>65</td>	88	73	73	72	71	70	69	68	67	66	65
91 77 76 76 75 74 73 72 71 70 69 92 79 78 77 76 75 74 73 72 71 70 93 80 79 78 77 76 75 74 73 72 94 81 80 79 79 78 77 76 75 74 73 95 82 82 81 80 79 78 77 76 75 75 96 84 83 82 81 80 80 79 78 77 76 97 85 84 83 83 82 81 80 79 78 77 98 86 85 85 84 83 82 81 80 79 99 87 87 86 85 84 83 82 81 80 100 89 88 87 86 86 85 84 83 82 101 90 89 88 87 86 85 85 103 92 92 91 90 90 89 88 104 94 93 92 92 91 90 90 89 105 95 94 94 93 92 92 91 90 90 89 106 96 95 94 <td< td=""><td>89</td><td>75</td><td>74</td><td>73</td><td>72</td><td>71</td><td>70</td><td>69</td><td>68</td><td>67</td><td>66</td></td<>	89	75	74	73	72	71	70	69	68	67	66
92797877767574737271709380797877767675747372948180797978777675747372958282818079787776757473968483828180807978777697858483828180797877988685848382818079998787868584838281801008988878686858483821019089898887868685841029191908988888786851039292919090898888871059594949392929190908910696959494939292919090107979796959494939292919010696959494939292919090 <trr< td=""><td>90</td><td>76</td><td>75</td><td>74</td><td>73</td><td>72</td><td>71</td><td>70</td><td>69</td><td>68</td><td>67</td></trr<>	90	76	75	74	73	72	71	70	69	68	67
9380797877767675747372948180797978777675747395828281807978777675759684838281808079787776978584838382818079787776988685858483828181807978779886858584838281818079787799878786868584838281801008988878686858483821019089898887868685848310291919089888887868585103929291909089888786104949392929190908910595949493929291901079797969695949493929210899989897979696 <td>91</td> <td>77</td> <td>76</td> <td>76</td> <td>75</td> <td>74</td> <td>73</td> <td>72</td> <td>71</td> <td>70</td> <td>69</td>	91	77	76	76	75	74	73	72	71	70	69
948180797978777675747395828281807978777675759684838281808079787776978584838382818079787776988685858483828180797877988685858483828180797877998787868584838281807999878786858483828180100898887868584838210190898887868584831029191908988878685103929291909089888710595949493929291909010696959494939292919010797979696959494939292108999898979796959511010110010099<	92	79	78	77	76	75	74	73	72	71	70
95 82 82 81 80 79 78 77 76 75 75 96 84 83 82 81 80 80 79 78 77 76 97 85 84 83 83 82 81 80 79 78 77 98 86 85 85 84 83 82 81 81 80 79 99 87 87 86 85 84 83 82 81 81 80 79 99 87 87 86 86 85 84 83 82 81 81 80 79 99 87 87 86 85 84 83 82 81 81 80 79 100 89 88 87 86 86 85 84 83 82 81 87 86 101 90 89 88 87 86 85 85 85 103 92 92 91 90 90 89 88 87 86 104 94 93 92 92 91 90 90 89 106 96 95 94 94 93 92 92 91 90 107 97 97 96 96 95 94 94 93 92 92 91 90 106 96 <td>93</td> <td>80</td> <td>79</td> <td>78</td> <td>77</td> <td>76</td> <td>76</td> <td>75</td> <td>74</td> <td>73</td> <td>72</td>	93	80	79	78	77	76	76	75	74	73	72
96 84 83 82 81 80 80 79 78 77 76 97 85 84 83 83 82 81 80 79 78 77 98 86 85 85 84 83 82 81 81 80 79 99 87 87 86 85 84 84 83 82 81 80 100 89 88 87 86 86 85 84 83 82 101 90 89 88 87 86 86 85 84 83 102 91 91 90 89 88 88 87 86 85 103 92 92 91 90 90 89 88 87 86 104 94 93 92 92 91 90 90 89 105 95 94 94 93 92 92 91 90 107 97 97 96 96 95 94 94 93 92 92 108 99 98 97 96 96 95 94 94 93 92 92 108 99 98 97 96 96 95 94 94 93 92 92 100 100 100 100 100 99 98 97 97	94	81	80	79	79	78	77	76	75	74	73
9785848383828180797877 98 86858584838281818079 99 87878685848483828180 100 89888786868584838382 101 90898988878686858483 102 9191908988878686858483 102 91919089888887868585 103 929291909089888786 104 949392929190908988 105 9594949392929190 106 9696959494939292 108 999897969695949493 109 100999898979796 111 10110010099989897 112 104103103102101101100 111 103102102101101100103 103 105104104103103102 <t< td=""><td>95</td><td>82</td><td>82</td><td>81</td><td>80</td><td>79</td><td>78</td><td>77</td><td>76</td><td>75</td><td>75</td></t<>	95	82	82	81	80	79	78	77	76	75	75
9886858584838281818079998787878685848382818010089888786868584838382101908989888786868584831029191908988888786858483103929291909089888887861049493929291909089888710595949493929291909089106969695949493929291901079797969695949493929210899989897969695949493109100999998989797969595110101101100100999998971121041031031021011011009999113105105104104103103102102115108107107106106105105 <td>96</td> <td>84</td> <td>83</td> <td>82</td> <td>81</td> <td>80</td> <td>80</td> <td>79</td> <td>78</td> <td>77</td> <td>76</td>	96	84	83	82	81	80	80	79	78	77	76
998787868584848382818010089888786868584838382101908989888786868584831029191908988888786858483103929291909089888887861049493929291909089888710595949493929291909089106969695949493929291901079797969695949493929210899989897969695949493109100999998989797969595110101101100100999998971121041031031021011011009999113105105104104103103102102115108107107106106105105104104103116109108108107107106 <td>97</td> <td>85</td> <td>84</td> <td>83</td> <td>83</td> <td>82</td> <td>81</td> <td>80</td> <td>79</td> <td>78</td> <td>77</td>	97	85	84	83	83	82	81	80	79	78	77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	98	86	85	85	84	83	82	81	81	80	79
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	99	87	87	86	85	84	84	83	82	81	80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	89	88	87	86	86	85	84	83	83	82
103929291909089888888878610494939292919090898887105959494939292919090891069696959494939292919010797979696959494939292911089998989796969594949310910099999898979796959511010110110010099989897979611110310210210110010099999897112104103103102102101101100100114106106105105104104103103102102115108107107106106105105104104103116109108108107107106106105105117110110109109108108107107106106118111111110110109109109109109109 <td>101</td> <td>90</td> <td>89</td> <td>89</td> <td>88</td> <td>87</td> <td>86</td> <td>86</td> <td>85</td> <td>84</td> <td>83</td>	101	90	89	89	88	87	86	86	85	84	83
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	102	91	91	90	89	88	88	87	86	85	85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	103	92	92	91	90	90	89	88	88	87	86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	104	94	93	92	92	91	90	90	89	88	87
1079797969695949493929210899989897969695949493109100999998989797969595110101101100100999898979796111103102102101100100999998971121041031031021021011011009999113105105104104103103102101101100114106106105105104104103103102102115108107107106106105105104104103116109108108107107106106105105117110110109109108108107107106106118111111111110110109109109109109109109119113112112111111111110110109109109	105	95	94	94	93	92	92	91	90	90	89
10899989897969695949493109100999998989797969595110101101100100999898979796111103102102101100100999998971121041031031021021011011009999113105105104104103103102102101114106106105105104104103103102102115108107107106106105105104104103116109108108107107106106105105117110110109109108108107107106106118111111110110109109109109109109119113112112111111111110110109109109	106	96	96	95	94	94	93	92	92	91	90
109100999998989797969595110101101100100999898979796111103102102101100100999998971121041031031021021011011009999113105105104104103103102101101101114106106105105104104103103102102115108107107106106105105104104103116109108108108107107106106105105117110110109109108108107107106106106118111111110110109109109109109109109119113112112111111111110110109109109	107	97	97	96	96	95	94	94	93	92	92
11010110110010099989897979611110310210210110010099999897112104103103102102101101100999999113105105104104103103102101101101100114106106105105104104103103102102115108107107106106105105104104103116109108108107107106106105105117110110109109108108107107106106118111111110110109109109109109109119113112112111111111110110109109	108	99	98	98	97	96	96	95	94	94	93
111103102102101100100999998971121041031031021021011011009999113105105104104103103102101101101114106106105105104104103103102102115108107107106106105105104104103116109108108107107106106105105117110110109109108108107107106106118111111111111111111110109109109119113112112111111111110110109109	109	100	99	99	98	98	97	97	96	95	95
1121041031031021021011011009999113105105104104103103102101101100114106106105105104104103103102102115108107107106106105105104104103116109108108108107107106106105105117110110109109108108107107106106118111111110110109109109109109109119113112112111111111110110109109	110	101	101	100	100	99	98	98	97	97	96
113105105104104103103102101101100114106106105105104104103103102102115108107107106106105105104104103116109108108107107106106105105105117110110109109108108107107106106118111111110110109109109109109109119113112112111111111110110109109	111	103	102	102	101	100	100	99	99	98	97
114106106105105104104103103102102115108107107106106105105104104103116109108108108107107106106105105117110110109109108108107107106106118111111110110110109109109108108119113112112111111111110110109109	112	104	103	103	102	102	101	101	100	99	99
115108107107106106105105104104103116109108108108107107106106105105117110110109109108108107107106106106118111111110110109109109109108108107119113112112111111111110110109109109	113	105	105	104	104	103	103	102	101	101	100
116109108108108107107106106105105117110110109109108108107107106106118111111111110110109109108108107119113112112111111111110110109109109	114	106	106	105	105	104	104	103	103	102	102
117110110109109108108107107106106118111111110110109109108108107119113112112111111111110110109109	115	108	107	107	106	106	105	105	104	104	103
118111111110110109109108108107119113112112111111111110110109109	116	109	108	108	108	107	107	106	106	105	105
119 113 112 112 111 111 111 110 110 109 109	117	110	110	109		108	108	107	107	106	106
	118	111	111	111	110	110	109	109	108	108	107
120 114 114 113 113 112 112 112 111 111 110	119	113	112	112	111	111	111	110	110	109	109
	120	114	114	113	113	112	112	112	111	111	110

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	INCH MAT	ERIAL W	ITH THE	+3/4 INCH	I MATERI	AL SPEC	FIC GRAV	VITY OF	2.6
	-				ENT of +	3/4 MATI	ERIAL			→
DD	21	22	23	24	25	26	27	28	29	30
121	115	115	114	114	114	113	113	113	112	112
122	116	116	116	115	115	115	114	114	114	113
123	118	117	117	117	116	116	116	115	115	115
124	119	119	118	118	118	117	117	117	116	116
125	120	120	120	119	119	119	118	118	118	117
126	122	121	121	121	120	120	120	119	119	119
127	123	123	122	122	122	121	121	121	121	120
128	124	124	124	123	123	123	123	122	122	122
129	125	125	125	125	124	124	124	124	123	123
130	127	126	126	126	126	126	125	125	125	125
131	128	128	127	127	127	127	127	126	126	126
132	129	129	129	129	128	128	128	128	128	127
133	130	130	130	130	130	130	129	129	129	129
134	132	132	131	131	131	131	131	131	130	130
135	133	133	133	133	132	132	132	132	132	132
136	134	134	134	134	134	134	133	133	133	133
137	135	135	135	135	135	135	135	135	135	135
138	137	137	137	136	136	136	136	136	136	136
139	138	138	138	138	138	138	138	138	137	137
140	139	139	139	139	139	139	139	139	139	139
141	141	141	140	140	140	140	140	140	140	140
142	142	142	142	142	142	142	142	142	142	142
143	143	143	143	143	143	143	143	143	143	143
144	144	144	144	144	144	144	144	144	145	145
145	146	146	146	146	146	146	146	146	146	146
146	147	147	147	147	147	147	147	147	147	147
147	148	148	148	148	148	148	149	149	149	149
148	149	149	150	150	150	150	150	150	150	150
149	151	151	151	151	151	151	151	151	152	152
150	152	152	152	152	152	153	153	153	153	153
151	153	153	153	154	154	154	154	154	154	155
152	154	155	155	155	155	155	155	156	156	156
153	156	156	156	156	156	157	157	157	157	157
154	157	157	157	158	158	158	158	158	159	159
155	158	158	159	159	159	159	160	160	160	160
156	160	160	160	160	160	161	161	161	161	162
157	161	161	161	161	162	162	162	163	163	163
158	162	162	163	163	163	163	164	164	164	165
159	163	164	164	164	164	165	165	165	166	166
160	165	165	165	165	166	166	166	167	167	167

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	NCH МАТ	ERIAL W	ITH THE ·	+3/4 INCH	MATERI	AL SPECI	FIC GRAV	VITY OF	2.6
	-				ENT of +					→
DD	31	32	33	34	35	36	37	38	39	40
80	52	50	49	48	46	45	43	42	40	38
81	53	52	51	49	48	46	45	43	42	40
82	55	53	52	51	49	48	46	45	43	41
83	56	55	54	52	51	49	48	46	45	43
84	58	56	55	54	52	51	49	48	46	45
85	59	58	57	55	54	53	51	50	48	46
86	60	59	58	57	55	54	53	51	50	48
87	62	61	60	58	57	56	54	53	51	50
88	63	62	61	60	59	57	56	54	53	51
89	65	64	63	61	60	59	57	56	55	53
90	66	65	64	63	62	60	59	58	56	55
91	68	67	66	64	63	62	61	59	58	56
92	69	68	67	66	65	63	62	61	60	58
93	71	70	68	67	66	65	64	62	61	60
94	72	71	70	69	68	67	65	64	63	61
95	74	73	71	70	69	68	67	66	64	63
96	75	74	73	72	71	70	69	67	66	65
97	76	75	74	73	72	71	70	69	68	66
98	78	77	76	75	74	73	72	71	69	68
99	79	78	77	76	75	74	73	72	71	70
100	81	80	79	78	77	76	75	74	73	71
101	82	81	80	79	79	78	76	75	74	73
102	84	83	82	81	80	79	78	77	76	75
103	85	84	83	83	82	81	80	79	78	76
104	87	86	85	84	83	82	81	80	79	78
105	88	87	86	86	85	84	83	82	81	80
106	89	89	88	87	86	85	84	83	82	81
107	91	90	89	89	88	87	86	85	84	83
108	92	92	91	90	89	88	88	87	86	85
109	94	93	92	92	91	90	89	88	87	86
110	95	95	94	93	92	92	91	90	89	88
111	97	96	95	95	94	93	92	92	91	90
112	98	98	97	96	95	95	94	93	92	91
113	100	99	98	98	97	96	96	95	94	93
114	101	100	100	99	99	98	97	96	96	95
115	103	102	101	101	100	99	99	98	97	96
116	104	103	103	102	102	101	100	100	99	98
117	105	105	104	104	103	103	102	101	101	100
118	107	106	106	105	105	104	103	103	102	101
119	108	108	107	107	106	106	105	104	104	103
120	110	109	109	108	108	107	107	106	105	105

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	INCH MAT	ERIAL W					IFIC GRAV	VITY OF	2.6
	—	~~				3/4 MATI			~~	→
DD	31	32	33	34	35	36	37	38	39	40
121	111	111	110	110	109	109	108	108	107	106
122	113	112	112	111	111	110	110	109	109	108
123	114	114	113	113	112	112	111	111	110	110
124	116	115	115	114	114	113	113	112	112	111
125	117	117	116	116	115	115	115	114	114	113
126	118	118	118	117	117	117	116	116	115	115
127	120	120	119	119	119	118	118	117	117	116
128	121	121	121	120	120	120	119	119	119	118
129	123	123	122	122	122	121	121	121	120	120
130	124	124	124	123	123	123	122	122	122	121
131	126	125	125	125	125	124	124	124	123	123
132	127	127	127	126	126	126	126	125	125	125
133	129	128	128	128	128	128	127	127	127	126
134	130	130	130	129	129	129	129	129	128	128
135	132	131	131	131	131	131	130	130	130	130
136	133	133	133	133	132	132	132	132	132	131
137	134	134	134	134	134	134	134	133	133	133
138	136	136	136	136	135	135	135	135	135	135
139	137	137	137	137	137	137	137	137	137	136
140	139	139	139	139	139	138	138	138	138	138
141	140	140	140	140	140	140	140	140	140	140
142	142	142	142	142	142	142	142	142	142	141
143	143	143	143	143	143	143	143	143	143	143
144	145	145	145	145	145	145	145	145	145	145
145	146	146	146	146	146	146	146	146	146	146
146	147	148	148	148	148	148	148	148	148	148
147	149	149	149	149	149	149	149	150	150	150
148	150	150	151	151	151	151	151	151	151	151
149	152	152	152	152	152	153	153	153	153	153
150	153	153	154	154	154	154	154	154	155	155
151	155	155	155	155	155	156	156	156	156	156
152	156	156	157	157	157	157	157	158	158	158
153	158	158	158	158	159	159	159	159	160	160
154	159	159	160	160	160	160	161	161	161	161
155	160	161	161	161	162	162	162	162	163	163
156	162	162	163	163	163	163	164	164	164	165
157	163	164	164	164	165	165	165	166	166	166
158	165	165	166	166	166	167	167	167	168	168
159	166	167	167	167	168	168	169	169	169	170
160	168	168	168	169	169	170	170	171	171	171

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

PERCENT of + 3/4 MATERIAL PERCENT of + 3/4 MATERIAL DD 1 2 3 4 5 6 7 8 9 10 80 79 79 78 77 76 75 74 73 72 81 80 80 79 78 77 76 75 74 74 82 81 81 80 79 78 77 76 75 75 83 82 82 81 81 80 79 78 77 76 75 76 84 83 82 82 81 80 79 78 77 86 85 84 83 82 81 80 79 78 86 85 84 83 82 81 80 80 79 78 86 85 85 84 83 82 81 80 82 81 80	DENSITY	′ OF -3/4 I	INCH MAT	ERIAL W	ITH THE	+3/4 INCH	I MATERI	AL SPECI	FIC GRA	VITY OF	2.7
80 79 79 78 77 76 76 75 74 73 72 81 80 80 79 78 77 76 75 74 74 82 81 81 80 79 78 77 76 75 75 83 82 82 81 81 80 79 78 77 77 76 84 83 83 82 81 81 80 79 78 78 77 77 76 85 84 83 82 82 81 80 79 78 78 78 78 78 78 78 78 78 78 86 85 84 83 82 81 80 79 78 78 86 85 84 84 91 90 90 89 88 87 87 86 86 93		-			PERC	ENT of +	3/4 MAT	ERIAL			
81 80 80 79 78 77 76 75 74 74 82 81 80 79 78 77 76 75 75 83 82 82 81 80 79 78 77 77 76 84 83 82 81 80 79 78 77 76 85 84 84 83 82 81 80 79 79 78 87 86 85 84 83 82 81 83 82 81 83 82 81 83 82 81 83 82 84 83 82 84 83 82 84 83 82 81 83 82 84 83 82 84 83 82 84 83 82 84 83 82 84 84 83 82 84 84 <th< td=""><td>DD</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td><td>10</td></th<>	DD	1	2	3	4	5	6	7	8	9	10
82 81 81 80 79 78 77 76 75 75 83 82 81 80 79 78 77 77 76 84 83 82 81 81 80 79 78 77 77 76 85 84 84 83 82 81 80 79 78 77 76 78 86 85 84 83 82 81 80 79 78 87 86 85 85 84 83 82 81 83 82 81 83 82 81 80 79 79 79 79 79 79 79 79 79 80 85 85 84 84 83 82 81 80 82 81 80 81	80	79	79	78	77	76	76	75	74	73	72
83 82 81 80 79 78 77 77 76 84 83 82 81 81 80 79 78 78 77 86 84 84 83 82 81 80 79 78 78 77 77 76 86 85 84 83 82 81 80 79 78 78 78 80 81 80 79 78 81 80 79 78 81 80 79 78 81 80 82 81 83 82 81 83 82 81 83 82 81 83 82 84 83 82 84 83 82 84 83 82 84 83 82 84 83 82 84 84 83 82 <td>81</td> <td>80</td> <td>80</td> <td>79</td> <td>78</td> <td>77</td> <td>77</td> <td>76</td> <td>75</td> <td>74</td> <td>74</td>	81	80	80	79	78	77	77	76	75	74	74
84 83 83 82 81 81 80 79 78 78 77 85 84 83 82 82 81 80 79 79 78 86 85 84 83 82 81 81 80 79 87 86 86 85 84 83 82 81 83 82 81 80 79 87 86 85 84 83 82 81 83 82 81 83 82 81 83 82 81 83 82 81 83 82 81 83 82 81 83 82 81 83 82 81 83 82 81 83 82 84 83 82 83 83 82 84 83 83 82 84 83 83 82 83 83 83 83 83	82	81	81	80	79	79	78	77	76	75	75
85 84 84 83 82 82 81 80 79 79 78 86 85 85 84 83 82 81 81 80 79 87 86 86 85 84 83 82 82 81 80 88 87 87 86 85 84 83 82 81 80 89 88 88 87 87 86 86 85 84 83 82 90 89 89 88 87 86 86 85 84 84 91 90 90 89 88 87 87 86 85 85 92 91 91 90 89 88 87 86 86 85 93 92 92 91 91 90 89 88 87 94 93 93 92 92 91 90 89 88 95 94 94 93 93 92 91 91 90 89 96 95 95 94 94 93 93 92 91 91 97 96 96 95 95 94 94 93 92 99 98 97 97 96 96 95 95 94 94 100 100 100 100 100 100 99 <td< td=""><td>83</td><td>82</td><td>82</td><td>81</td><td>80</td><td>80</td><td>79</td><td>78</td><td>77</td><td>77</td><td>76</td></td<>	83	82	82	81	80	80	79	78	77	77	76
86 85 84 83 83 82 81 81 80 79 87 86 86 85 84 83 82 82 81 80 89 88 87 86 85 84 83 82 84 83 82 84 83 82 84 83 82 84 83 82 84 84 83 82 84 83 82 84 83 83 82 84 84 83 82 87 87 86 86 85 85 84 84 83 82 87 87	84	83	83	82	81	81	80	79	78	78	77
87 86 86 85 84 84 83 82 82 81 80 88 87 87 86 85 84 83 83 82 81 89 88 88 87 87 86 85 84 83 82 90 89 89 88 87 86 86 85 84 84 91 90 98 89 88 87 86 85 85 92 91 91 90 89 88 87 86 85 93 92 92 91 91 90 89 89 88 95 94 94 93 93 92 91 90 89 93 92 91 90 89 93 92 91 93 92 91 93 92 91 93 92 91 94	85	84	84	83	82	82	81	80	79	79	78
88 87 87 86 85 85 84 83 83 82 81 89 88 88 87 87 86 85 85 84 83 82 90 89 89 88 87 86 86 85 84 84 91 90 90 89 88 87 86 85 85 92 91 91 90 89 88 87 86 86 85 93 92 92 91 91 90 89 88 88 87 94 93 93 92 92 91 91 90 89 88 88 87 95 94 94 93 93 92 91 93 92 91 97 97 96 95 95 94 94 93 92 91	86	85	85	84	83	83	82	81	81	80	79
89 88 88 87 87 86 85 85 84 83 82 90 89 89 88 87 86 86 85 84 84 91 90 90 89 88 87 87 86 85 85 92 91 91 90 89 88 88 87 86 86 93 92 92 91 91 90 89 88 88 87 86 86 94 93 93 92 92 91 91 90 89 88 88 87 94 93 93 92 92 91 90 90 89 88 87 93 93 92 91 90 93 93 92 91 94 93 93 92 91 94 93 92 91 94 94	87	86	86	85	84	84	83	82	82	81	80
9089898888878686858484919090898988878786858592919190898888888786869392929191908989888887949393929291919089898895949493939291919090899695959494939392919190979696959594949393929198979796969595949493929999989797969695959494100100999998979796969595101101100100999998979710310310210210110110010099105104104103103102102101101100106105105104104103103102102101101107106106105105104104103103	88	87	87	86	85	85	84	83	83	82	81
91 90 90 89 89 88 87 87 86 85 85 92 91 91 90 90 89 88 88 87 86 86 93 92 92 91 91 90 89 88 88 87 94 93 93 92 92 91 91 90 89 88 95 94 94 93 93 92 92 91 90 90 89 96 95 95 94 94 93 93 92 91 90 90 89 92 91 93 93 92 91 93 93 92 91 93 92 91 93 92 91 93 92 94 94 93 92 91 94 93 92 91 94 94 93 92 95	89	88	88	87	87	86	85	85	84	83	82
9291919090898888888786869392929191908989888887949393929291919089898895949493939292919090899695959494939392919190979696959594949393929198979796969595949493929999989797969695959494100100999998979796969595101101100100999998979796961021021011011001009999989797103103102102101101100100999998104104103103102102101101100102105104104103103102102101101100106105105104104103103102102101107106106105105	90	89	89	88	88	87	86	86	85	84	84
9392929191908989888887949393929291919089898895949493939292919090899695959494939392919190979696959594949393929198979796969595949493929999989797969695959494931001009999989797969695951011011001009999989797969610210210110110010099999897971031031021021011011001009910510410410310310210210110110010610610510510410410310310210210110710610610510510410410310310210210810810710710610610510510410410410910910910		90		89		88	87			85	85
9493939292919190898988959494939392929190908996959594949393929191909796969595949493939291989797969695959494939299999897979696959594941001009999989797969695951011011001009999989797969610210210110110010099999897971031031021021011011001009999105105104104103103102102101101106106105105104104103103102102101107106106105105104104103103102102108108107107106106105105104104104109109108108107107106106105105110110109109	92	91	91	90	90	89	88	88	87	86	86
9594949393929291909089969595949493939291919097969695959494939392919897979696959594949392999998979796969595949493100100999998979796969595101101100100999998979796961021021011011001009999989797103103102102101101100100999998104104103103102102101101100100105104104103103102102101101100106106105105104104103103102102101107106106105105104104103103102102101107106106105105104104103103102102101108108107107106106105105105104104	93	92	92	91	91		89	89	88	88	87
96 95 95 94 93 93 92 91 91 90 97 96 96 95 95 94 94 93 93 92 91 98 97 97 96 96 95 95 94 94 93 92 99 99 98 97 97 96 96 95 95 94 94 100 100 99 99 98 97 97 96 96 95 95 101 101 100 100 99 99 98 97 97 96 96 102 102 101 101 100 100 99 99 98 97 97 103 103 102 102 101 101 100 100 99 99 105 104 104 103 103 102 102 101 101 100 106 105 105 104 104 103 103 102 102 101 107 106 106 105 105 104 104 103 103 102 108 107 107 106 106 105 105 104 104 104 109 108 108 107 107 106 106 105 105 110 110 109 109 108 108 107	94	93	93	92	92	91	91	90	89	89	88
979696959594949393929198979796969595949493929999989797969695959494100100999998979796969595101101100100999998979796961021021011011001009999989797103103102102101101100100999998104104103103102102101101100100105105104104103103102102101101100106106105105104104103103102102101107106106105105104104103103102102101108108107107106106105105104104104103108108107107106106105105104104104109109108108107107106106105105110110109109109108108107107106<	95	94	94	93	93	92	92	91	90	90	89
98 97 97 96 96 95 95 94 94 93 92 99 99 98 97 97 96 96 95 95 94 94 100 100 99 99 98 97 97 96 96 95 95 101 101 100 100 99 99 98 97 97 96 96 102 102 101 101 100 100 99 99 98 97 97 103 103 102 102 101 101 100 100 99 99 98 104 104 103 103 102 102 101 101 100 100 99 99 98 105 104 104 103 103 102 102 101 101 100 100 100 100 103 <td>96</td> <td>95</td> <td>95</td> <td>94</td> <td>94</td> <td>93</td> <td>93</td> <td>92</td> <td>91</td> <td>91</td> <td>90</td>	96	95	95	94	94	93	93	92	91	91	90
99 99 98 97 97 96 96 95 95 94 94 100 100 99 99 98 97 97 96 96 95 95 101 101 100 100 99 99 98 97 97 96 96 102 102 101 101 100 100 99 99 98 97 97 103 102 102 101 101 100 100 99 99 98 97 97 103 103 102 102 101 101 100 100 99 99 98 97 97 105 104 102 102 101 101 100 100 100 100 100 100 100 100 100 100 100 101 101 101 100 101 100 102 <t< td=""><td>97</td><td>96</td><td>96</td><td>95</td><td>95</td><td>94</td><td>94</td><td>93</td><td>93</td><td>92</td><td>91</td></t<>	97	96	96	95	95	94	94	93	93	92	91
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	98	97	97	96	96	95	95	94	94	93	92
10110110010099999897979696102102101101100100999998979710310310210210110110010099999810410410310310210210110110010099105105104104103103102102101101100991051051041041031031021021011011009910610610510510410410310310210210110710610610510510410410310310210810810710710610610610510511011010910910910910810810710711111111011011011010010910910810811311311311311211211111111011010911411411311311311211211111111010911411411411311311311211211111111011511411411311311311211211	99	99	98	97	97	96	96	95	95	94	94
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	100	99	99	98	97	97	96	96	95	95
103 103 102 102 101 101 100 100 99 99 98 104 104 103 103 102 102 101 101 100 100 99 105 105 104 104 103 103 102 102 101 101 100 99 105 105 104 104 103 102 102 101 101 100 106 106 105 105 104 103 103 102 102 101 107 106 106 105 105 104 104 103 103 102 108 108 107 107 106 106 105 105 104 104 104 109 109 108 108 107 107 106 106 105 105 110 110 109 109 108 <td>101</td> <td>101</td> <td>100</td> <td>100</td> <td>99</td> <td>99</td> <td>98</td> <td>97</td> <td>97</td> <td>96</td> <td>96</td>	101	101	100	100	99	99	98	97	97	96	96
10410410310310210210110110010099105105104104103103102102101101100106106105105104104103103102102101107106106105105104104103103102102108108107107106106105105104104104109109108108107107106106106105105110110109109108108107107106106106111111110110109109109108108107107112112111111110110110109109108108113113112112111111110110109109114114113113113112112111111110115114114114113113112112111111110116116116116115115114114114114118118117117116116116116116116119119118118118117117117116<	102	102	101	101	100	100	99	99	98	97	97
10510510410410310310210210110110010610610510510410410310310210210110710610610510510410410310310210110810810710710610610510510410410410910910810810710710610610610510511011010910910810810710710610611111111011010910910910810810711211211111111011010910910910810811311311211211111111011010910910911411411311311311211211111111010911411411411311311311211211111111111011511511511511411411311311211211111111011611611611611511511411	103	103	102	102	101	101	100	100	99	99	98
106106105105104104103103102102101107107106106105105104104103103102108108107107106106105105104104104104109109108108107107106106106105105110110109109108108107107106106106111111110110109109109108108107107112112111111110110109109108108113113112112111111110110109114114113113112112111111111110115115115115114114113113112112111116116116116115115115114114114118118117117116116116116116116116119119118118118117117117116116116116	104	104	103	103	102	102	101	101	100	100	99
107107106106105105104104103103102108108107107106106105105104104104109109108108107107106106106105105110110109109108108108107107106106111111110110109109109108108107107112112111111110110109109109108108113113112112111111110110109114114113113113112112111111111115115115115114114113113112112111116116115115115114114114114114118118117117116116116116116116116119119118118118117117117117116116116116	105	105	104	104	103	103	102	102	101	101	100
108108107107106106105105104104104109109108108107107106106106105105110110109109108108108107107106106111111110110109109109108108107107112112111111110110110109109108108113113112112111111110110110109114114113113113112112111111111115115114114113113112112111116116115115114114114114113113117117116116115115115115115119119118118118117117117116116116											
109109108108107107106106106105105110110109109108108108107107106106111111110110109109109108108107107112112111111110110110109109108108113113112112111111110110109109114114113113112112111111111110115115114114113113112112111111116116115115114114114114113113112117117116116116115115115114114114118118118118117117117116116116116											
110110109109108108108107107106106111111110109109109109108108107107112112111111110110110109109109108108113113112112111111111110110109109108108114114113113112112111111111110109115115114114113113112112111111111116116115115114114114113113112117117116116115115115115114114118118118118117117116116116116119119118118118117117117116116116											
111111110109109109109108108107107112112111111110110110109109108108113113112112111111111110110110110109114114113113113112112111111111111110115115114114114113113112112111111111116116115115114114114114113113112117117116116115115115115114114114118118117117116116116116116116116119119118118118117117117116116116116											
112112111111110110110109109108108113113112112112111111110110110109114114113113113112112111111111111110115115114114114113113112112112111116116115115114114114114113113112117117116116116115115115114114114118118117117116116116116116116116119119118118118117117117116116116116116											
113113112112112111111110110109114114113113113112112111111111110115115114114114113113112112112111116116115115115114114113113112117117116116115115115115114114118118117117116116116115115115119119118118118117117117116116116											
114114113113113112112111111111110115115114114114113113112112112111116116115115115114114114113113112117117116116116115115115114114114118118117117116116116116115115119119118118118117117117116116116											
115115114114113113112112112111116116115115115114114114113113112117117116116116115115115114114114114118118117117116116116116115115115119119118118118117117117116116116											
116116115115114114114113113112117117116116116115115115114114114118118117117116116116116115115115115119119118118118117117117116116116116116											
117117116116115115115114114114118118117117116116116115115115119119118118117117117116116116116											
118117117116116116115115115119118118117117117116116116											
119 119 118 118 118 117 117 117 116 116 116											
120 120 119 119 119 119 118 118 118 117 117											
	120	120	119	119	119	119	118	118	118	117	117

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4	INCH MAT	FERIAL W					IFIC GRAV	VITY OF	2.7
	←	-		-		3/4 MATI			<u> </u>	→
DD	1	2	3	4	5	6	7	8	9	10
121	121	120	120	120	120	119	119	119	118	118
122	122	121	121	121	121	120	120	120	119	119
123	123	122	122	122	122	121	121	121	121	120
124	124	124	123	123	123	122	122	122	122	121
125	125	125	124	124	124	124	123	123	123	122
126	126	126	125	125	125	125	124	124	124	124
127	127	127	126	126	126	126	125	125	125	125
128	128	128	127	127	127	127	126	126	126	126
129	129	129	128	128	128	128	128	127	127	127
130	130	130	129	129	129	129	129	128	128	128
131	131	131	130	130	130	130	130	129	129	129
132	132	132	131	131	131	131	131	131	130	130
133	133	133	133	132	132	132	132	132	131	131
134	134	134	134	133	133	133	133	133	133	132
135	135	135	135	134	134	134	134	134	134	134
136	136	136	136	135	135	135	135	135	135	135
137	137	137	137	137	136	136	136	136	136	136
138	138	138	138	138	137	137	137	137	137	137
139	139	139	139	139	139	138	138	138	138	138
140	140	140	140	140	140	139	139	139	139	139
141	141	141	141	141	141	141	140	140	140	140
142	142	142	142	142	142	142	142	141	141	141
143	143	143	143	143	143	143	143	143	142	142
144	144	144	144	144	144	144	144	144	144	144
145	145	145	145	145	145	145	145	145	145	145
146	146	146	146	146	146	146	146	146	146	146
147	147	147	147	147	147	147	147	147	147	147
148	148	148	148	148	148	148	148	148	148	148
149	149	149	149	149	149	149	149	149	149	149
150	150	150	150	150	150	150	150	150	150	150
151	151	151	151	151	151	151	151	151	151	151
152	152	152	152	152	152	152	152	152	152	152
153	153	153	153	153	153	153	153	153	153	154
154	154	154	154	154	154	154	154	154	155	155
155	155	155	155	155	155	155	156	156	156	156
156	156	156	156	156	156	156	157	157	157	157
157	157	157	157	157	157	158	158	158	158	158
158	158	158	158	158	159	159	159	159	159	159
159	159	159	159	159	160	160	160	160	160	160
160	160	160	160	160	161	161	161	161	161	161

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	OF -3/4 I	NCH MAT	ERIAL W	ITH THE ·	+3/4 INCH	IMATERI	AL SPECI	FIC GRAV		2.7
	-			PERC	ENT of +	3/4 MATI	ERIAL			\rightarrow
DD	11	12	13	14	15	16	17	18	19	20
80	72	71	70	69	68	67	66	65	64	63
81	73	72	71	70	69	68	67	66	65	64
82	74	73	72	71	70	69	68	67	66	65
83	75	74	73	72	71	71	70	69	68	67
84	76	75	74	74	73	72	71	70	69	68
85	77	76	76	75	74	73	72	71	70	69
86	78	78	77	76	75	74	73	72	71	70
87	79	79	78	77	76	75	74	74	73	72
88	81	80	79	78	77	77	76	75	74	73
89	82	81	80	79	79	78	77	76	75	74
90	83	82	81	81	80	79	78	77	76	75
91	84	83	82	82	81	80	79	78	78	77
92	85	84	84	83	82	81	80	80	79	78
93	86	85	85	84	83	82	82	81	80	79
94	87	87	86	85	84	84	83	82	81	80
95	88	88	87	86	86	85	84	83	83	82
96	90	89	88	87	87	86	85	85	84	83
97	91	90	89	89	88	87	87	86	85	84
98	92	91	90	90	89	88	88	87	86	85
99	93	92	92	91	90	90	89	88	87	87
100	94	93	93	92	91	91	90	89	89	88
101	95	95	94	93	93	92	91	91	90	89
102	96	96	95	94	94	93	93	92	91	90
103	97	97	96	96	95	94	94	93	92	92
104	99	98	97	97	96	96	95	94	94	93
105	100	99	99	98	97	97	96	96	95	94
106	101	100	100	99	99	98	97	97	96	95
107	102	101	101	100	100	99	99	98	97	97
108	103	103	102	101	101	100	100	99	99	98
109	104	104	103	103	102	102	101	100	100	99
110	105	105	104	104	103	103	102	102	101	100
111	106	106	105	105	104	104	103	103	102	102
112	108	107	107	106	106	105	105	104	103	103
113	109	108	108	107	107	106	106	105	105	104
114	110	109	109	108	108	107	107	106	106	105
115	111	110	110	110	109	109	108	108	107	107
116	112	112	111	111	110	110	109	109	108	108
117	113	113	112	112	111	111	111	110	110	109
118	114	114	113	113	113	112	112	111	111	110
119	115	115	115	114	114	113	113	113	112	112
120	117	116	116	115	115	115	114	114	113	113

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	INCH MAT	ERIAL W	ITH THE ·	+3/4 INCH	I MATERI	AL SPEC	FIC GRA	VITY OF	2.7
	-					3/4 MATI				→
DD	11	12	13	14	15	16	17	18	19	20
121	118	117	117	117	116	116	115	115	115	114
122	119	118	118	118	117	117	117	116	116	115
123	120	120	119	119	119	118	118	117	117	117
124	121	121	120	120	120	119	119	119	118	118
125	122	122	122	121	121	121	120	120	120	119
126	123	123	123	122	122	122	121	121	121	120
127	124	124	124	124	123	123	123	122	122	122
128	125	125	125	125	124	124	124	124	123	123
129	127	126	126	126	126	125	125	125	124	124
130	128	128	127	127	127	127	126	126	126	125
131	129	129	128	128	128	128	127	127	127	127
132	130	130	130	129	129	129	129	128	128	128
133	131	131	131	131	130	130	130	130	129	129
134	132	132	132	132	131	131	131	131	131	130
135	133	133	133	133	133	132	132	132	132	132
136	134	134	134	134	134	134	133	133	133	133
137	136	135	135	135	135	135	135	135	134	134
138	137	137	136	136	136	136	136	136	136	135
139	138	138	138	137	137	137	137	137	137	137
140	139	139	139	139	139	138	138	138	138	138
141	140	140	140	140	140	140	140	139	139	139
142	141	141	141	141	141	141	141	141	141	140
143	142	142	142	142	142	142	142	142	142	142
144	143	143	143	143	143	143	143	143	143	143
145	145	145	145	144	144	144	144	144	144	144
146	146	146	146	146	146	146	146	146	145	145
147	147	147	147	147	147	147	147	147	147	147
148	148	148	148	148	148	148	148	148	148	148
149	149	149	149	149	149	149	149	149	149	149
150	150	150	150	150	150	150	150	150	150	150
151	151	151	151	151	151	152	152	152	152	152
152	152	153	153	153	153	153	153	153	153	153
153	154	154	154	154	154	154	154	154	154	154
154	155	155	155	155	155	155	155	155	155	155
155	156	156	156	156	156	156	156	156	157	157
156	157	157	157	157	157	157	158	158	158	158
157	158	158	158	158	159	159	159	159	159	159
158	159	159	159	160	160	160	160	160	160	160
159	160	160	161	161	161	161	161	161	162	162
160	161	162	162	162	162	162	162	163	163	163

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

PERCENT of + 3/4 MATERIAL PERCENT of + 3/4 MATERIAL DD 21 22 23 24 25 26 27 28 29 30 80 62 61 60 58 57 56 55 54 52 82 64 63 62 61 60 59 57 56 55 54 83 66 65 64 63 61 60 59 58 56 84 67 66 65 64 63 62 61 59 58 86 67 66 65 64 63 62 61 87 71 70 69 68 67 66 65 64 63 62 61 88 72 71 70 69 68 67 66 65 64 63 62 61 80 79 73 72 <th>DENSITY</th> <th>′ OF -3/4 I</th> <th>NCH MAT</th> <th>ERIAL W</th> <th>ITH THE ·</th> <th>+3/4 INCH</th> <th>IMATERI</th> <th>AL SPECI</th> <th>FIC GRAV</th> <th>/ITY OF</th> <th>2.7</th>	DENSITY	′ OF -3/4 I	NCH MAT	ERIAL W	ITH THE ·	+3/4 INCH	IMATERI	AL SPECI	FIC GRAV	/ITY OF	2.7
8062616058575655535251816362616059575655545282646362616059585655836665646361605958568467666564636260595885686766656463626159877170696867666564636261887271706968676665636261897372717069686766656463626180757473727170696867666564907574737271706968666564917675747372717069686665927776757473727170696866927776757473727170696866937877767574737271767574		-			PERC	ENT of +	3/4 MATI	ERIAL			→
81 63 62 61 60 59 57 56 55 54 52 82 64 63 62 61 60 59 57 56 55 84 67 66 65 64 63 61 60 59 58 56 85 68 67 66 65 64 63 62 60 59 58 86 69 68 67 66 65 64 63 62 61 87 71 70 69 68 67 66 65 64 80 72 71 70 69 68 67 66 65 91 76 74 73 72 71 70 69 68 67 66 65 91 76 75 74 73 72 71 70 69 68 66 92 77 76 75 74 73 72 71 70 69 68 93 78 77 76 75 74 73 72 70 69 94 80 79 78 77 76 75 74 73 72 71 96 82 81 80 79 78 77 76 75 74 97 83 83 82 81 80 79 78 77 76 77 <	DD	21	22	23	24	25	26	27	28	29	30
B2 64 63 62 61 60 59 57 56 55 54 $B3$ 66 65 64 62 61 60 59 58 56 $B4$ 67 66 65 64 63 61 60 59 58 $B6$ 69 68 67 66 65 64 63 62 61 $B7$ 71 70 69 68 67 66 65 64 63 62 61 $B8$ 72 71 70 69 68 67 66 65 64 90 75 74 73 72 71 70 69 68 67 66 65 91 76 75 74 73 72 71 70 69 68 67 66 65 91 76 75 74 73 72 71 70 69 68 92 77 76 75 74 73 72 71 70 69 94 80 79 78 77 76 75 74 73 72 71 96 82 81 80 79 78 77 76 75 74 73 72 71 96 82 81 80 79 78 77 76 75 74 73 72 71 97 83	80	62	61	60	58	57	56	55	53	52	51
83 66 65 64 62 61 60 59 58 56 84 67 66 65 64 63 62 60 59 58 86 69 68 67 66 65 64 63 62 61 59 87 71 70 69 68 67 66 65 64 63 62 61 88 72 71 70 69 68 67 66 65 64 63 62 61 89 73 72 71 70 69 68 67 66 65 64 90 75 74 73 72 71 70 68 67 66 65 91 76 75 74 73 72 71 70 69 68 66 92 77 76 75 74 73 72 71 70 69 68 93 78 77 76 75 74 73 72 71 70 69 68 93 80 79 78 77 76 75 74 73 72 71 96 82 81 80 79 78 77 76 75 74 73 72 71 96 82 81 80 79 78 77 76 75 74 73 72 <	81	63	62	61	60	59	57	56	55	54	52
84 67 66 65 64 63 61 60 59 58 56 85 68 67 66 65 64 63 62 60 59 58 86 69 68 67 66 63 62 61 59 87 71 70 69 68 67 66 65 64 88 72 71 70 69 68 67 66 65 64 90 75 74 73 72 71 70 69 68 66 91 76 75 74 73 72 71 70 69 68 92 77 76 75 74 73 72 71 70 69 68 93 78 77 76 75 74 73 72 70 69 94 80 79 78 77 76 75 74 73 72 71 96 82 81 80 79 78 77 76 75 74 73 72 71 96 82 84 83 82 81 80 79 78 77 76 75 74 73 72 71 96 82 84 83 82 81 80 79 78 77 76 75 96 85 84 83	82	64	63	62	61	60	59	57	56	55	54
85 68 67 66 65 64 63 62 60 59 58 86 69 68 67 66 65 64 63 62 61 88 72 71 70 69 68 67 66 65 63 62 89 73 72 71 70 69 68 67 66 65 64 90 75 74 73 72 71 70 69 68 67 66 65 91 76 75 74 73 72 71 70 69 68 92 77 76 75 74 73 72 71 70 69 83 82 81 80 79 78 77 76 75 74 73 72 71 96 82 81 80 79 78 77 76 75 74 73 72 71 96 82 81 80 79 78 77 76 75 74 73 72 71 96 82 81 80 79 78 77 76 75 74 73 72 71 96 82 81 80 79 78 77 76 75 74 73 72 97 83 83 82 81 80 79 78 77 <	83	66	65	64	62	61	60	59	58	56	55
86 69 68 67 66 65 64 63 62 61 59 87 71 70 69 68 67 66 65 63 62 61 88 72 71 70 69 68 67 66 65 64 90 75 74 73 72 71 70 69 68 67 66 65 91 76 75 74 73 72 71 70 69 68 66 92 77 76 75 74 73 72 71 70 69 68 93 78 77 76 75 74 73 72 70 69 94 80 79 78 77 76 75 74 73 72 71 96 82 81 80 79 78 77 76 75 74 73 72 96 82 81 80 79 78 77 76 75 74 73 72 96 85 84 83 82 81 80 79 78 77 76 78 77 76 75 74 73 72 77 76 98 85 84 83 82 81 80 79 100 87 86 85 84 83 82 81 <td>84</td> <td>67</td> <td>66</td> <td>65</td> <td>64</td> <td>63</td> <td>61</td> <td>60</td> <td>59</td> <td>58</td> <td>56</td>	84	67	66	65	64	63	61	60	59	58	56
87 71 70 69 68 67 65 64 63 62 61 88 72 71 70 69 68 67 66 65 63 62 89 73 72 71 70 69 68 67 66 65 64 90 75 74 73 72 71 70 69 68 66 91 76 75 74 73 72 71 70 69 68 92 77 76 75 74 73 72 71 70 69 68 93 78 77 76 75 74 73 72 70 69 94 80 79 78 77 76 75 74 73 72 71 95 81 80 79 78 77 76 75 74 73 72 71 96 82 81 80 79 78 77 76 75 74 97 83 83 82 81 80 79 78 77 76 98 85 84 83 82 81 80 79 78 70 86 85 84 83 82 81 80 79 78 76 86 85 84 83 82 81 100 87 86 85	85	68	67	66	65	64	63	62	60	59	58
88 72 71 70 69 68 67 66 65 63 62 89 73 72 71 70 69 68 67 66 65 90 75 74 73 72 71 70 68 67 66 65 91 76 75 74 73 72 71 70 69 68 66 92 77 76 75 74 73 72 71 70 69 68 93 78 77 76 75 74 73 72 71 69 68 93 78 77 76 75 74 73 72 71 69 94 80 79 78 77 76 75 74 73 72 71 96 82 81 80 79 78 77 76 75 74 73 72 96 82 81 80 79 78 77 76 75 74 97 83 83 82 81 80 79 78 77 76 98 85 84 83 82 81 80 79 78 100 87 86 85 84 83 82 81 80 79 101 88 88 87 86 85 84 83 82 81 <td>86</td> <td>69</td> <td>68</td> <td>67</td> <td>66</td> <td>65</td> <td>64</td> <td>63</td> <td>62</td> <td>61</td> <td>59</td>	86	69	68	67	66	65	64	63	62	61	59
89 73 72 71 70 69 68 67 66 65 64 90 75 74 73 72 71 70 68 67 66 65 91 76 75 74 73 72 71 70 69 68 66 92 77 76 75 74 73 72 71 70 69 68 93 78 77 76 75 74 73 72 71 69 94 80 79 78 77 76 75 74 73 72 71 95 81 80 79 78 77 76 75 74 73 72 96 82 81 80 79 79 78 77 76 75 98 85 84 83 82 81 80 79 78 77 76 99 86 85 84 83 82 81 80 79 78 100 87 86 86 85 84 83 82 81 80 79 101 88 87 86 85 84 83 82 81 80 79 101 88 87 86 85 84 83 82 81 102 90 89 88 87 86 85 84	87	71	70	69	68	67	65	64	63	62	61
9075747372717068676665917675747372717069686692777675747372717069689378777675747372717069689480797877767574737271958180797877767574737271968281807979787776757473729682818079797877767574978383828180797877767598858483828180797877767599868584838281807978100878686858483828180791018888878685848382811029089888786858483821039190898887868584104929291908988<	88	72	71	70	69	68	67	66	65	63	62
9176757473727170 69 68 66 927776757473727170 69 68 93787776767574737270 69 948079787776757473727195818079787776757473727196828180797978777675747372968281807979787776757473729783838281807978777675749885848382818079787776998685848382818079781008786868584838281102908988878685848382103919089888786858483821059393929191908988878610695949393929190898810796959493 <td>89</td> <td>73</td> <td>72</td> <td>71</td> <td>70</td> <td>69</td> <td>68</td> <td>67</td> <td>66</td> <td>65</td> <td>64</td>	89	73	72	71	70	69	68	67	66	65	64
92 77 76 75 74 73 72 71 70 69 68 93 78 77 76 75 74 73 72 70 69 94 80 79 78 77 76 75 74 73 72 71 95 81 80 79 78 77 76 75 74 73 72 71 96 82 81 80 79 79 78 77 76 75 74 97 83 83 82 81 80 79 78 77 76 75 98 85 84 83 82 81 80 79 78 77 76 75 99 86 85 84 83 82 81 80 79 78 77 76 99 86 85 84 83 82 81 80 79 78 100 87 86 86 85 84 83 82 81 80 101 88 88 87 86 85 84 83 82 81 102 90 89 88 87 86 85 84 83 82 103 91 90 89 88 87 86 85 84 104 92 92 91 90 89 88 87	90	75	74	73	72	71	70	68	67	66	65
937877767675747372706994807978777675747372719581807978777675747372968281807979787776757473729783838281807978777675749783838281807978777675988584838281807978777699868584838281807978100878686858483828180791018888878685848382811029089888786858483821039190898887868584104929291908988878610593939291908988871069594939291908988107969594939291901089797969594 <td>91</td> <td>76</td> <td>75</td> <td>74</td> <td>73</td> <td>72</td> <td>71</td> <td>70</td> <td>69</td> <td>68</td> <td>66</td>	91	76	75	74	73	72	71	70	69	68	66
94807978777675747372719581807978777675747372968281807979787776757497838382818079787776759885848382818079787776759986858483838281807978777699868584838281807978777610087868685848382818079101888887868584838281102908988878685848382103919089888786858483821049292919089888786858410492929190898887868510593939291908988878610695949393929190891089797969594939292 </td <td>92</td> <td>77</td> <td>76</td> <td>75</td> <td>74</td> <td>73</td> <td>72</td> <td>71</td> <td>70</td> <td>69</td> <td>68</td>	92	77	76	75	74	73	72	71	70	69	68
95 81 80 79 78 77 76 75 74 73 72 96 82 81 80 79 78 77 76 75 74 97 83 83 82 81 80 79 78 77 76 75 98 85 84 83 82 81 80 79 78 77 76 75 98 85 84 83 82 81 80 79 78 77 76 75 99 86 85 84 83 82 81 80 79 78 77 76 100 87 86 86 85 84 83 82 81 80 79 101 88 88 87 86 85 84 83 82 81 80 79 101 88 88 87 86 85 84 83 82 81 102 90 89 88 87 86 85 84 83 82 103 91 90 89 88 87 86 85 84 104 92 92 91 90 89 88 87 86 106 95 94 93 93 92 91 90 89 106 95 94 93 93 92 91 90 89 </td <td>93</td> <td>78</td> <td>77</td> <td>76</td> <td>76</td> <td>75</td> <td>74</td> <td>73</td> <td>72</td> <td>70</td> <td>69</td>	93	78	77	76	76	75	74	73	72	70	69
96 82 81 80 79 79 78 77 76 75 74 97 83 83 82 81 80 79 78 77 76 75 98 85 84 83 82 81 80 79 78 77 76 99 86 85 84 83 82 81 80 79 78 100 87 86 86 85 84 83 82 81 80 79 101 88 88 87 86 85 84 83 82 81 102 90 89 88 87 86 85 84 83 82 103 91 90 89 88 87 86 85 84 83 82 103 91 90 89 88 87 86 85 84 104 92 92 91 90 89 88 87 86 106 95 94 93 92 91 90 90 89 88 107 96 95 95 94 93 92 91 90 89 108 97 97 96 95 94 93 92 91 90 108 97 97 96 95 94 93 92 91 90 109 99 98 <td>94</td> <td>80</td> <td>79</td> <td>78</td> <td>77</td> <td>76</td> <td>75</td> <td>74</td> <td>73</td> <td>72</td> <td>71</td>	94	80	79	78	77	76	75	74	73	72	71
97 83 83 82 81 80 79 78 77 76 75 98 85 84 83 82 81 80 79 78 77 76 99 86 85 84 83 83 82 81 80 79 78 100 87 86 86 85 84 83 82 81 80 79 78 101 88 88 87 86 85 84 83 82 81 80 79 101 88 88 87 86 85 84 83 82 81 80 79 101 88 88 87 86 85 84 83 82 81 102 90 89 88 87 86 85 84 83 82 103 91 90 89 88 87 86 85 84 104 92 92 91 90 89 88 87 86 105 93 93 92 91 90 89 88 87 86 106 95 94 93 93 92 91 90 89 88 107 96 95 94 93 92 91 90 89 108 97 97 96 95 94 93 92 91 109 </td <td>95</td> <td>81</td> <td>80</td> <td>79</td> <td>78</td> <td>77</td> <td>76</td> <td>75</td> <td>74</td> <td>73</td> <td>72</td>	95	81	80	79	78	77	76	75	74	73	72
9885848382818079787776998685848383828180797810087868685848382818079101888887868584848382811029089888787868584838281102908988878786858483828110290898887868584838281103919089888786858483821039190898988878685841049292919089888786851059393929190898887861069594939392919089881079695959493929291108979796959493929211010099999897979695112102102101101100999998114105104104	96	82	81	80	79	79	78	77	76	75	74
998685848383828180797810087868685848382818079101888887868584848382811029089888787868584838281102908988878786858483828110391908989888786858584104929291908988878685105939392919089888786106959493939291908988107969595949392919089108979796959493929291109999897979695949392110100999998979796951121021021011011009999981141051041041031031021011011161071071061051041041031031021111110109 <td>97</td> <td>83</td> <td>83</td> <td>82</td> <td>81</td> <td>80</td> <td>79</td> <td>78</td> <td>77</td> <td>76</td> <td>75</td>	97	83	83	82	81	80	79	78	77	76	75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	98	85	84	83	82	81	80	79	78	77	76
10188888786858484838281 102 90898887878685848382 103 91908989888786858584 104 92929190898888878685 105 93939291919089888786 106 959493939291908988 107 969595949392919089 108 979796959493929291 109 9998979796959493929291 109 9998979796959493929291 109 99989797969594949392 110 100 99999897979695 112 102 101 101 100 999998 114 103 102 101 101 100 99 115 106 106 105 104 103 103 102 101 101 116 107 106 106 105 104 104	99	86	85	84	83	83	82	81	80	79	78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	87	86	86	85	84	83	82	81	80	79
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	101	88	88	87	86	85	84	84	83	82	81
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	102	90	89	88	87	87	86	85	84	83	82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	103	91	90	89	89	88	87	86	85	85	84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	104	92	92	91	90	89	88	88	87	86	85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	105	93	93	92	91	91	90	89	88	87	86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	106	95	94	93	93	92	91	90	90	89	88
10999989797969594949392110100999998979796959494111101100100999998979796959495112102102101101100999998979695113104103102102101101100999998979611310410310210210110110099999811410510410410310210110110099115106106105104103103102101101116107107106106105105104103103102117109108108107107106106105105104104118110109109108108107107106105105104105119111111110110109109108108107106106105	107	96	95	95	94	93	93	92	91	90	89
11010099999897979695949411110110010099999897979695112102102101101100999998979611310410310210210110110099999811410510410410310310210110110099115106106105104104103103102101101116107107106106105105104103103102117109108108107107106105105104104118110109109108108107107106105119111111110110109109108108107106	108	97	97	96	95	95	94	93	92	92	91
111101100100999998979796951121021021011011009999989796113104103102102101101100999998979611310410310210210110110099999811410510410410310310210110199115106106105104104103103102101101116107107106106105105104103103102117109108108107107106105105104104118110109109108108107107106105105119111111110110109109108108107106	109	99	98	97	97	96	95	94	94	93	92
112102102101101100999998979611310410310210210110110099999811410510410410310310210110110099115106106105104104103103102101101116107107106106105105104103103102117109108108107107106105105104104118110109109108108107107106105105119111111110110109109108108107106	110	100	99	99	98	97	97	96	95	94	94
11310410310210210110110099999811410510410410310310210110110099115106106105104104103103102101101116107107106106105105104103103102117109108108107107106105105104104118110109109108108107107106106105119111111110110109109108108107106		101	100	100	99	99	98	97	97	96	95
11410510410410310310210110110099115106106105104104103103102101101116107107106106105105104103103102117109108108107107106105105104104118110109109108108107107106106105119111111110110109109108108107106	112	102	102	101	101	100	99	99	98	97	96
115106106105104104103103102101101116107107106106105105104103103102117109108108107107106105105104104118110109109108108107107106106105119111111110110109109108108107106	113	104	103	102	102	101	101	100	99	99	98
116107107106106105105104103103102117109108108107107106105105104104118110109109108108107107106106105119111111110110109109108108107106	114	105	104	104	103	103	102	101	101	100	99
117109108108107107106105105104104118110109108108107107106106105119111111110110109109108108107106	115	106	106	105	104	104	103	103	102	101	101
118110109109108108107107106106105119111111110110109109108108107106											
119 111 111 110 110 109 109 108 108 107 106	117	109	108	108	107	107	106	105	105	104	104
		110	109	109	108	108	107	107	106	106	105
120 112 112 111 111 110 110 109 108 108											106
	120	112	112	112	111	111	110	110	109	108	108

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	INCH MAT	ERIAL W					IFIC GRAV	VITY OF	2.7
	—	0.5				3/4 MATI			0.5	→
DD	21	22	23	24	25	26	27	28	29	30
121	114	113	113	112	112	111	111	110	110	109
122	115	115	114	114	113	113	112	112	111	111
123	116	116	115	115	115	114	114	113	113	112
124	118	117	117	116	116	115	115	115	114	114
125	119	118	118	118	117	117	116	116	115	115
126	120	120	119	119	119	118	118	117	117	116
127	121	121	121	120	120	120	119	119	118	118
128	123	122	122	122	121	121	121	120	120	119
129	124	124	123	123	123	122	122	122	121	121
130	125	125	125	124	124	124	123	123	123	122
131	126	126	126	126	125	125	125	124	124	124
132	128	127	127	127	127	126	126	126	125	125
133	129	129	128	128	128	128	127	127	127	126
134	130	130	130	129	129	129	129	128	128	128
135	131	131	131	131	131	130	130	130	130	129
136	133	133	132	132	132	132	131	131	131	131
137	134	134	134	133	133	133	133	133	132	132
138	135	135	135	135	135	134	134	134	134	134
139	137	136	136	136	136	136	136	135	135	135
140	138	138	138	137	137	137	137	137	137	136
141	139	139	139	139	139	138	138	138	138	138
142	140	140	140	140	140	140	140	140	139	139
143	142	142	141	141	141	141	141	141	141	141
144	143	143	143	143	143	143	142	142	142	142
145	144	144	144	144	144	144	144	144	144	144
146	145	145	145	145	145	145	145	145	145	145
147	147	147	147	147	147	147	147	147	146	146
148	148	148	148	148	148	148	148	148	148	148
149	149	149	149	149	149	149	149	149	149	149
150	150	150	151	151	151	151	151	151	151	151
151	152	152	152	152	152	152	152	152	152	152
152	153	153	153	153	153	153	153	153	154	154
153	154	154	154	154	155	155	155	155	155	155
154	156	156	156	156	156	156	156	156	156	156
155	157	157	157	157	157	157	157	158	158	158
156	158	158	158	158	159	159	159	159	159	159
157	159	159	160	160	160	160	160	160	161	161
158	161	161	161	161	161	161	162	162	162	162
159	162	162	162	162	163	163	163	163	163	164
160	163	163	164	164	164	164	164	165	165	165

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	OF -3/4 I	INCH MAT	ERIAL W					IFIC GRA	VITY OF	2.7
	—	00			ENT of +				00	→
DD	31	32	33	34	35	36	37	38	39	40
80	49	48	46	45	43	42	40	38	36	34
81	51	49	48	46	45	43	41	40	38	36
82	52	51	49	48	46	45	43	41	40	38
83	54	52	51	49	48	46	45	43	41	39
84	55	54	52	51	49	48	46	45	43	41
85	57	55	54	52	51	49	48	46	45	43
86	58	57	55	54	52	51	49	48	46	44
87	59	58	57	55	54	53	51	49	48	46
88	61	60	58	57	56	54	53	51	49	48
89	62	61	60	58	57	56	54	53	51	49
90	64	63	61	60	59	57	56	54	53	51
91	65	64	63	62	60	59	57	56	54	53
92	67	66	64	63	62	60	59	58	56	54
93	68	67	66	65	63	62	61	59	58	56
94	70	68	67	66	65	63	62	61	59	58
95	71	70	69	68	66	65	64	62	61	59
96	73	71	70	69	68	67	65	64	63	61
97	74	73	72	71	69	68	67	66	64	63
98	75	74	73	72	71	70	68	67	66	64
99	77	76	75	74	72	71	70	69	68	66
100	78	77	76	75	74	73	72	70	69	68
101	80	79	78	77	76	74	73	72	71	69
102	81	80	79	78	77	76	75	74	72	71
103	83	82	81	80	79	78	76	75	74	73
104	84	83	82	81	80	79	78	77	76	74
105	86	85	84	83	82	81	80	78	77	76
106	87	86	85	84	83	82	81	80	79	78
107	88	88	87	86	85	84	83	82	81	79
108	90	89	88	87	86	85	84	83	82	81
109	91	91	90	89	88	87	86	85	84	83
110	93	92	91	90	89	88	88	87	86	84
111	94	93	93	92	91	90	89	88	87	86
112	96	95	94	93	92	92	91	90	89	88
113	97	96	96	95	94	93	92	91	90	89
114	99	98	97	96	96	95	94	93	92	91
115	100	99	99	98	97	96	95	95	94	93
116	102	101	100	99	99	98	97	96	95	94
117	103	102	102	101	100	99	99	98	97	96
118	104	104	103	102	102	101	100	99	99	98
119	106	105	105	104	103	103	102	101	100	99
120	107	107	106	105	105	104	103	103	102	101

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING

DENSITY	′ OF -3/4 I	NCH MAT	FERIAL W	ITH THE ·	+3/4 INCH	I MATERI	AL SPEC	IFIC GRA	VITY OF	2.7
	-					3/4 MATI				→
DD	31	32	33	34	35	36	37	38	39	40
121	109	108	108	107	106	106	105	104	104	103
122	110	110	109	108	108	107	107	106	105	104
123	112	111	111	110	109	109	108	108	107	106
124	113	113	112	112	111	110	110	109	108	108
125	115	114	114	113	112	112	111	111	110	109
126	116	116	115	115	114	113	113	112	112	111
127	117	117	117	116	116	115	115	114	113	113
128	119	118	118	118	117	117	116	116	115	114
129	120	120	120	119	119	118	118	117	117	116
130	122	121	121	121	120	120	119	119	118	118
131	123	123	122	122	122	121	121	120	120	119
132	125	124	124	124	123	123	122	122	122	121
133	126	126	125	125	125	124	124	124	123	123
134	128	127	127	127	126	126	126	125	125	124
135	129	129	128	128	128	128	127	127	127	126
136	130	130	130	130	129	129	129	128	128	128
137	132	132	131	131	131	131	130	130	130	129
138	133	133	133	133	132	132	132	132	131	131
139	135	135	134	134	134	134	134	133	133	133
140	136	136	136	136	136	135	135	135	135	134
141	138	138	137	137	137	137	137	137	136	136
142	139	139	139	139	139	138	138	138	138	138
143	141	141	140	140	140	140	140	140	140	139
144	142	142	142	142	142	142	141	141	141	141
145	144	143	143	143	143	143	143	143	143	143
146	145	145	145	145	145	145	145	145	145	144
147	146	146	146	146	146	146	146	146	146	146
148	148	148	148	148	148	148	148	148	148	148
149	149	149	149	149	149	149	149	149	149	149
150	151	151	151	151	151	151	151	151	151	151
151	152	152	152	152	152	153	153	153	153	153
152	154	154	154	154	154	154	154	154	154	154
153	155	155	155	155	156	156	156	156	156	156
154	157	157	157	157	157	157	157	158	158	158
155	158	158	158	158	159	159	159	159	159	159
156	159	160	160	160	160	160	161	161	161	161
157	161	161	161	162	162	162	162	162	163	163
158	162	163	163	163	163	163	164	164	164	164
159	164	164	164	165	165	165	165	166	166	166
160	165	166	166	166	166	167	167	167	168	168

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING DIVISION

FORM T-316 MP 207.07.20 REV. 08-22

LAB NUMBER	
AUTHORIZATION NUMBER	
PROJECT NUMBER	
DISTRICT	
LOT NUMBER	
ITEM NUMBER	

GAUGE NUMBER			TEST NUMBER		1	L	2	2		3		4		5
MANUFACTURER'S	STANDA	RDS	DATE											
DENSITY			STATION NUMBER	ft.										
MOISTURE			OFFSET	ft.										
GAUGE STANDAR	D COUNT	ſS	DEPTH BELOW GRADE	ft.										
DENSITY			LIFT THICKNESS	ft.										
MOISTURE			DEPTH OF SOURCE	ft.										
DB	Y.	DA	TOTAL DRY DENSITY	lb/ft ³										
FROM TABLES	Field Density Moisture	МА	MOISTURE	lb/ft3										
	eld D Mois	DB	DRY DENSITY -3/4	lb/ft3										
$MR = \frac{MA(100)}{MA(100)}$	Fie	МВ	MOISTURE	%										
$\mathbf{MB} = \frac{1}{DB}$		СА	EXC. MATERIAL + PAN	grams										
CC = CA - CB	J ⊢	СВ	PAN	grams										
CF = CD - CE	TION	сс	EXCAVATED MAT.	grams										
$CC = \frac{CF(100)}{CF(100)}$	MAT	CD	PLUS +3/4 MAT. + PAN	grams										
$\mathbf{CG} = \frac{\mathbf{CC}}{\mathbf{CC}}$	3/4 I RMI	CE	PAN	grams										
PC = PA - PB	PLUS 3/4 MATERIAL DETERMINATION	CF	PLUS 3/4 MAT	grams										
PD = PC (0.066)	Ы	CG	PLUS 3/4 MAT	%										
$PE = \frac{PD(100)}{PD(100)}$		СН	SPECIFIC GRAVITY											
$\mathbf{PE} = \frac{100 + MB}{100 + MB}$						RERUN		RERUN		RERUN		RERUN		RERUN
PE = $\frac{PD(100)}{PE}$		РА	WEIGHT SOIL & MOLD	grams										
(RERUN) $100 + SG$	OR INT	РВ	MOLD	grams										
	ONE POINT PROCTOR	РС	WEIGHT OF SOIL	grams										
RERUN PROCTOR	ONE PR(PD	WET DENSITY	lb/ft ³										
		PE	DRY DENSITY	lb/ft3										
SC = SA - SB		SA	WET WEIGHT + PAN	grams										
SE = SD - SB		SB	PAN	grams										
SF = SC - SE	STOVE DRIED MOISTURE	sc	WET WEIGHT	grams										
$SC = \frac{SF(100)}{SC}$	tove driei Moisture	SD	DRY WEIGHT + PAN	grams										
SG = SE	MO	SE	DRY WEIGHT	grams										
$DE = \frac{DB(100)}{DC}$	S	SF	MOISTURE	grams										
$DE = \frac{DC}{DC}$		SG	MOISTURE	%										
$\sum DE$	<u> </u>	OA	OPTIMUM MOISTURE	%										
$\overline{\mathbf{X}} = \frac{2DL}{5}$	MOIST. EVAL	ОВ	PLUS / MINUS TOLER.											
-	Σ ^ш	ос	PASS / FAIL											
	AL N	DC	MAXIMUM DENSITY	lb/ft3										
$\overline{X} = \frac{\overline{X} - T}{\overline{X}}$	DEN EVAL	DE	RELATIVE DENSITY	%										
$\mathbf{QL} = \overline{R}$	x		AVERAGE DE	%			INSPECT	ORS NA	ME:					
	NOL	т	TARGET	%			INSPECTORS							
·	UAT.	QL	QUALITY INDEX				SIGNATU							
	:VAL	DF	WITHIN TOLERANCE	%					PR	DJECT'S E	EVALUAT	ION		
	LOT EVALUATION	DG	MIN. FOR 100% PAY	%			CHECK	ED BY:						
	Ľ	DH	PASS / FAIL				DA	TE:						

ONE-POINT PROCTOR EXAMPLE MP 207.07.20

WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING DIVISION

FORM T-316 MP 207.07.20 REV. 08-22

GAUGE NUMBER			TEST NUMBER		1		2			3		4	5
MANUFACTURER	S STANDA	RDS	DATE										
DENSITY			STATION NUMBER	ft.									
MOISTURE			OFFSET	ft.									
GAUGE STANDA	RD COUN	TS	DEPTH BELOW GRADE	ft.									
DENSITY			LIFT THICKNESS	ft.									
MOISTURE			DEPTH OF SOURCE	ft.									
DB	2	DA	TOTAL DRY DENSITY	lb/ft ³									
FROM TABLES	Field Density Moisture	MA	MOISTURE	lb/ft3									
	Mois	DB	DRY DENSITY -3/4	lb/ft3									
MA(100)	- Eie	MB	MOISTURE	%									
$\mathbf{MB} = \frac{1}{DB}$		CA	EXC. MATERIAL + PAN	grams									
CC = CA - CB	- 	СВ	PAN	grams									
CF = CD - CE		СС	EXCAVATED MAT.	grams									
$CC = \frac{CF(100)}{CF(100)}$	PLUS 3/4 MATERIAL DETERMINATION	CD	PLUS +3/4 MAT. + PAN	grams									
$\mathbf{CG} =$	8/4 N	CE	PAN	grams									
PC = PA - PB		CF	PLUS 3/4 MAT	grams									
PD = PC (0.066)		CG	PLUS 3/4 MAT	%									
PD(100)	1	СН	SPECIFIC GRAVITY										
$\mathbf{PE} = \frac{1}{100 + MB}$						RERUN	R	RERUN		RERUN		RERUN	RERUN
PE = $\frac{PD(100)}{PD(100)}$		PA	WEIGHT SOIL & MOLD	grams									
RERUN) $\overline{100 + SG}$	Т К	PB	MOLD	grams									
	ONE POINT PROCTOR	PC	WEIGHT OF SOIL	grams									
RERUN PROCTOR	DRG	PD	WET DENSITY	lb/ft ³									
		PE	DRY DENSITY	lb/ft3									
SC = SA - SB		SA	WET WEIGHT + PAN	grams									
SE = SD - SB]	SB	PAN	grams									
SF = SC - SE	STOVE DRIED MOISTURE	SC	WET WEIGHT	grams									
$SG = \frac{SF(100)}{SF(100)}$	TOVE DRIEE MOISTURE	SD	DRY WEIGHT + PAN	grams									
SG = SE	MO	SE	DRY WEIGHT	grams									
$DE = \frac{DB(100)}{DB(100)}$] "	SF	MOISTURE	grams									
$DE = \frac{DC}{DC}$		SG	MOISTURE	%									
$\sum DE$		OA	OPTIMUM MOISTURE	%									
$\overline{\mathbf{X}} = \frac{\underline{2} \cdot \underline{2} \cdot \underline{2}}{5}$	MOIST. EVAL	OB	PLUS / MINUS TOLER.										
	≥ ≞	ос	PASS / FAIL										
_	DEN EVAL	DC	MAXIMUM DENSITY	lb/ft3									
$\overline{X} - T$	B	DE	RELATIVE DENSITY	%									
$\mathbf{QL} = \overline{R}$	_	X	AVERAGE DE	%			INSPECTO	DRS NAI	ME:				
	ION	т	TARGET	%			INSPECTO	DRS					
		QL	QUALITY INDEX				SIGNATU	RE:					
	EVAI	DF	WITHIN TOLERANCE	%					PR	OJECT'S E	VALUAT	ION	
	LOT EVALUATION	DG	MIN. FOR 100% PAY	%			CHECKEI	D BY:					
		DH	PASS / FAIL				DATI	E:					

GAUGE NUMBER	36688	88	TEST NUMBER	~	1	2	3	4	5
MANUFACTURER'S STANDARDS	S STAND	ARDS	DATE						
DENSITY	2935	5	STATION NUMBER	ft.					
MOISTURE	664	_	OFFSET	ft.					
GAUGE STANDARD COUNTS	ARD COI	UNTS	DEPTH BELOW GRADE	fit.					
DENSITY	2902	2	LIFT THICKNESS	in.					
MOISTURE	658	~	DEPTH OF SOURCE	in.					
DB		DA	TOTAL DRY DENSITY	Ib/ft ³	127				
FROM TABLES	sunts sua(MA	MOISTURE	Ib/ft ³	12				
		DB	DRY DENSITY -3/4	Ib/ft ³					
MB = <u>MA (100)</u>		MB	MOISTURE	%					
DB		CA	EXC. MATERIAL + PAN	grams					
CC = CA - CB		CB	PAN	grams					
CF = CD - CE		ខ	EXCAVATED MAT.	grams					
CG = <u>CF (100)</u>		8	PLUS 3/4 MAT. + PAN	grams					
S	3/4 I	B	PAN	grams					
PC = PA - PB		Ч	PLUS 3/4 MAT.	grams					
PD = PC (0.066)		90 0	PLUS 3/4 MAT.	%					
PE = <u>PD</u> (100)		СН	SPECIFIC GRAVITY						
100 + MB					RERUN	RERUN	RERUN	I RERUN	RERUN
RERUN PROCTOR		PA	WEIGHT SOIL & MOLD	grams					
PE (RERUN) =	YO.	BB	MOLD	grams					
PD (100)		DC	WEIGHT OF SOIL	grams					
100 + SG	PR(ONE	D	WET DENSITY	Ib/ft ³					
		BE	DRY DENSITY	Ib/ft ³					

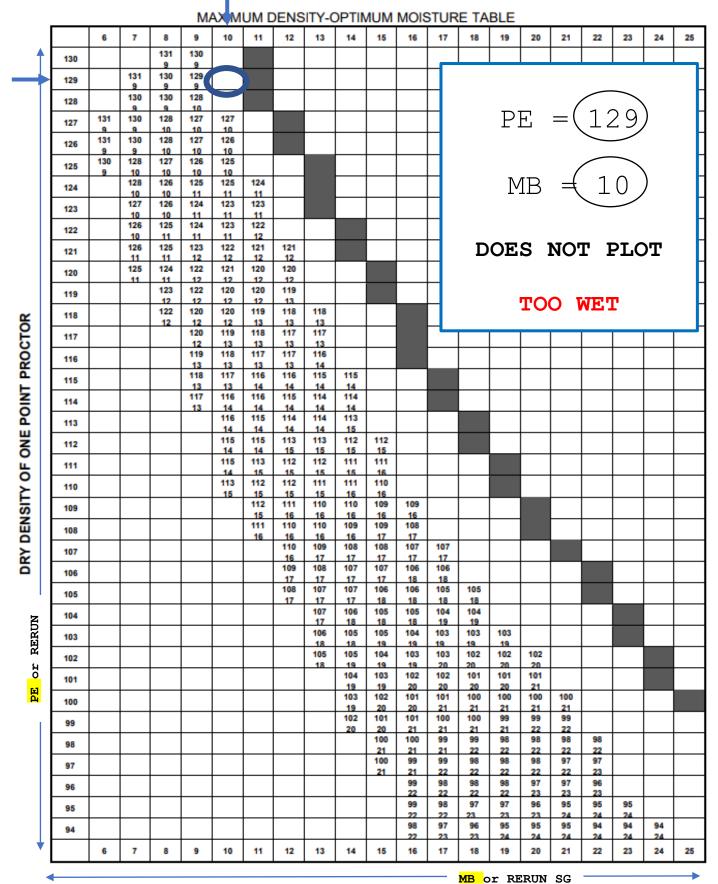
GAUGE NUMBER	36688	88	TEST NUMBER	~	1	2	3	4	5
MANUFACTURER'S	STANDARDS	ARDS	DATE						
DENSITY	2935	10	STATION NUMBER	ft.					
MOISTURE	664		OFFSET	ft.					
GAUGE STANDARD COUNTS	RD COL	INTS	DEPTH BELOW GRADE	ft.					
DENSITY	2902	~	LIFT THICKNESS	in.					
MOISTURE	658		DEPTH OF SOURCE	in.					
DB		DA	TOTAL DRY DENSITY	Ib/ff ³	127				
FROM TABLES		MA	MOISTURE	lb/ft ³	12				
] Die SioM	DB	DRY DENSITY -3/4	Ib/ff ³					
MB = <u>MA (100)</u>		MB	MOISTURE	%					
DB		CA	EXC. MATERIAL + PAN	grams	4910				
CC = CA - CB		8	PAN	grams	600				
CF = CD - CE		ខ	EXCAVATED MAT.	grams	4310				
CG = <u>CF (100)</u>		0	PLUS 3/4 MAT. + PAN	grams					
cc	874 I	S	PAN	grams					
PC = PA - PB		СF	PLUS 3/4 MAT.	grams					
PD = PC (0.066)		90 0	PLUS 3/4 MAT.	%					
PE = <u>PD (100)</u>		R	SPECIFIC GRAVITY						
100 + MB					RERUN	RERUN	RERUN	RERUN	RERUN
RERUN PROCTOR		PA	WEIGHT SOIL & MOLD	grams					
PE (RERUN) =	NIC	PB	MOLD	grams					
PD (100)		2	WEIGHT OF SOIL	grams					
100 + SG	PR(ONE	PD	WET DENSITY	Ib/ft ³					
		BE	DRY DENSITY	Ib/ff ³					

GAUGE NUMBER	36688	88	TEST NUMBER	~	1	2	3	4	5
MANUFACTURER'S	STANDARDS	ARDS	DATE						
DENSITY	2935	5	STATION NUMBER	ft.					
MOISTURE	664		OFFSET	ft.					
GAUGE STANDARD COUNTS	RD COL	NTS	DEPTH BELOW GRADE	ft.					
DENSITY	2902	2	LIFT THICKNESS	in.					
MOISTURE	658		DEPTH OF SOURCE	in.					
DB	i iţ	DA	TOTAL DRY DENSITY	Ib/ft ³	127				
FROM TABLES	sture Snot	MA	MOISTURE	lb/ft ³	12				
	3 Die SioM	DB	DRY DENSITY -3/4	lb/ft ³					
MB = <u>MA (100</u>)) H	MB	MOISTURE	%					
DB		CA	EXC. MATERIAL + PAN	grams	4910				
cc = CA - CB		CB	PAN	grams	600				
CF = CD - CE		8 S	EXCAVATED MAT.	grams	4310				
CG = CF (100)		<mark>0</mark>	PLUS 3/4 MAT. + PAN	grams	859				
CC	1 4/8	뜅	PAN	grams	600				
PC = PA - PB		ჸ	PLUS 3/4 MAT.	grams	259				
PD = PC (0.066)		ອິ	PLUS 3/4 MAT.	%					
PE = <u>PD (100)</u>		ы	SPECIFIC GRAVITY						
100 + MB					RERUN	RERUN	RERUN	RERUN	RERUN
RERUN PROCTOR		PA	WEIGHT SOIL & MOLD	grams					
PE (RERUN) =	80. LNIC	РВ	MOLD	grams					
PD (100)		S	WEIGHT OF SOIL	grams					
100 + SG	PR(ONE	DD	WET DENSITY	Ib/ft ³					
	,	R	DRY DENSITY	Ib/ft ³					

GAUGE NUMBER	36688	88	TEST NUMBER	~	1	2	3	4	5
MANUFACTURER'S	S STANDARDS	ARDS	DATE						
DENSITY	2935	5	STATION NUMBER	ft.					
MOISTURE	664		OFFSET	ft.					
GAUGE STANDARD COUNTS	ARD COI	UNTS	DEPTH BELOW GRADE	ft.					
DENSITY	2902	2	LIFT THICKNESS	in.					
MOISTURE	658	~	DEPTH OF SOURCE	in.					
DB	i iţî	DA	TOTAL DRY DENSITY	Ib/ft ³	127				
FROM TABLES	sunts sua(MA	MOISTURE	lb/ft ³	12				
	j ble SioM	DB	DRY DENSITY -3/4	Ib/ft ³					
MB = <u>MA (100)</u>) H	MB	MOISTURE	%					
DB		CA	EXC. MATERIAL + PAN	grams	4910				
CC = CA - CB		CB	PAN	grams	600				
CF = CD - CE		ខ	EXCAVATED MAT.	grams	4310				
CG = <u>CF</u> (100)		8	PLUS 3/4 MAT. + PAN	grams	859				
cc	84 I	G	PAN	grams	600				
РС = РА - РВ		Ъ	PLUS 3/4 MAT.	grams	259				
PD = PC (0.066)		90 0	PLUS 3/4 MAT.	%	9				
PE = <u>PD</u> (100)		СН	SPECIFIC GRAVITY						
100 + MB					RERUN	RERUN	RERUN	RERUN	RERUN
RERUN PROCTOR		PA	WEIGHT SOIL & MOLD	grams					
PE (RERUN) =	NIC	BB	MOLD	grams					
PD (100)		PC	WEIGHT OF SOIL	grams					
100 + SG	PR(ONE	8	WET DENSITY	Ib/ft ³					
		PE	DRY DENSITY	Ib/ft ³					

GAUGE NUMBER	36688	88	TEST NUMBER	~	1	2	3	4	5
MANUFACTURER'S STANDARDS	S STAND	ARDS	DATE						
DENSITY	2935	5	STATION NUMBER	ft.					
MOISTURE	664	_	OFFSET	ft.					
GAUGE STANDARD COUNTS	ARD COI	NTS	DEPTH BELOW GRADE	ft.					
DENSITY	2902	2	LIFT THICKNESS	in.					
MOISTURE	658	_	DEPTH OF SOURCE	in.					
DB	; iţî	DA	TOTAL DRY DENSITY	lb/ft ³	127				
FROM TABLES	sunts sua(MA	MOISTURE	lb/ft ³	12				
	j ble SioM	DB	DRY DENSITY -3/4	lb/ft ³					
MB = <u>MA (100</u>)	Ei	MB	MOISTURE	%					
DB		CA	EXC. MATERIAL + PAN	grams	4910				
CC = CA - CB		CB	PAN	grams	600				
CF = CD - CE		ខ	EXCAVATED MAT.	grams	4310				
CG = <u>CF</u> (100)		C	PLUS 3/4 MAT. + PAN	grams	859				
cc	84 I 1 4/5	G	PAN	grams	600				
PC = PA - PB		СF	PLUS 3/4 MAT.	grams	259				
PD = PC (0.066)		00	PLUS 3/4 MAT.	%	9				
PE = <u>PD (100)</u>		сн	SPECIFIC GRAVITY		2.6				
100 + MB					RERUN	RERUN	RERUN	RERUN	RERUN
RERUN PROCTOR		PA	WEIGHT SOIL & MOLD	grams					
PE (RERUN) =	YO.	ВВ	MOLD	grams					
PD (100)		РС	WEIGHT OF SOIL	grams					
100 + SG	PR(ONE	8	WET DENSITY	Ib/ft ³					
		PE	DRY DENSITY	lb/ft ³					

MP 207 07 20	ENT NO. 5 OF 32	2.6	t	10	119	120	121	122	123	124	125	126	127	129	130	131	132	133	134
MP 2	ATTACHMENT NO. 5 18 OF 32	ITY OF		6	119	120	121	122	123	124	125	127	128	129	130	131	132	133	134
CH	ATTA	AL WITH THE +3/4 INCH MATERIAL SPECIFIC GRAVITY OF		8	119	120	121	122	123	125	126	127	128	129	130	131	132	133	134
	(5	AL SPECII	ERIAL	7	119	120	122	123	124	125	126	127	128	129	130	131	132	133	134
	WEST VIRGINIA DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING	MATERIA	PERCENT of + 3/4 MATERIAL	9	120	121	122	123	124	125	126	127	128	129	130	131	132	133	135
	WEST VIRGINIA DIVISION OF HIGHWAYS ATERIALS CONTROL, SOILS AND TESTIN	-3/4 INCH	ENT of +	5	120	121	122	123	124	125	126	127	128	129	130	131	132	134	135
	DIVISION ROL, SO	TH THE +	PERCE	4	120	121	122	123	124	125	126	127	128	129	131	132	133	134	135
	RGINIA I S CONTI	ERIAL WI		°	120	121	122	123	124	125	127	128	129	130	131	132	133	134	135
	WEST VI ATERIAL	NCH MAT		2	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135
	W	OF -3/4 II	ţ	-	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135
		DENSITY OF -3/4 INCH MATERI		8	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135
		_					•					,							


បូ ប

GAUGE NUMBER	36688	88	TEST NUMBER	~	1	2	3	4	5
MANUFACTURER'S	STANDARDS	ARDS	DATE						
DENSITY	2935	2	STATION NUMBER	ft.					
MOISTURE	664		OFFSET	ft.					
GAUGE STANDARD COUNTS	RD COL	NTS	DEPTH BELOW GRADE	ft.					
DENSITY	2902		LIFT THICKNESS	in.					
MOISTURE	658		DEPTH OF SOURCE	in.					
DB	e sity	DA	TOTAL DRY DENSITY	lb/ft ³	127				
FROM TABLES	sunts Sua(MA	MOISTURE	lb/ft ³	12				
] ble SioM	88	DRY DENSITY -3/4	lb/ft ³	126				
MB = <u>MA (100</u>)	Eid	WB	MOISTURE	%	10				
DB		сA	EXC. MATERIAL + PAN	grams	4910				
cc = cA - cB		CB	PAN	grams	600				
CF = CD - CE		ខ	EXCAVATED MAT.	grams	4310				
CG = <u>CF</u> (100)		<mark>0</mark>	PLUS 3/4 MAT. + PAN	grams	859				
cc	84 I	G	PAN	grams	600				
PC = PA - PB		СF	PLUS 3/4 MAT.	grams	259				
PD = PC (0.066)		ອິ	PLUS 3/4 MAT.	%	9				
PE = <u>PD (100)</u>		ы	SPECIFIC GRAVITY		2.6				
100 + MB					RERUN	RERUN	RERUN	RERUN	RERUN
RERUN PROCTOR		PA	WEIGHT SOIL & MOLD	grams					
PE (RERUN) =	NIC	BB	MOLD	grams					
PD (100)		2	WEIGHT OF SOIL	grams					
100 + SG	PR(DD	WET DENSITY	Ib/ft ³					
	,	BE	DRY DENSITY	lb/ft ³					

GAUGE NUMBER	36688	88	TEST NUMBER	~	1	2	3	4	5
MANUFACTURER'S STANDARDS	STAND	ARDS	DATE						
DENSITY	2935	2	STATION NUMBER	ft.					
MOISTURE	664		OFFSET	ft.					
GAUGE STANDARD COUNTS	RD COL	NTS	DEPTH BELOW GRADE	ft.					
DENSITY	2902	~	LIFT THICKNESS	in.					
MOISTURE	658		DEPTH OF SOURCE	in.					
DB		DA	TOTAL DRY DENSITY	Ib/ft ³	127				
FROM TABLES	sture anuts	MA	MOISTURE	lb/ft ³	12				
		DB	DRY DENSITY -3/4	Ib/ft ³	126				
MB = <u>MA</u> (100)		MB	MOISTURE	%	10				
DB		CA	EXC. MATERIAL + PAN	grams	4910				
CC = CA - CB		CB	PAN	grams	009				
CF = CD - CE		ខ	EXCAVATED MAT.	grams	4310				
CG = <u>CF</u> (100)		0	PLUS 3/4 MAT. + PAN	grams	859				
S	BW 174	ы	PAN	grams	009				
PC = PA - PB		СF	PLUS 3/4 MAT.	grams	259				
PD = PC (0.066)		99 0	PLUS 3/4 MAT.	%	9				
PE = <u>PD</u> (100)		ы	SPECIFIC GRAVITY		2.6				
100 + MB					RERUN	RERUN	RERUN	RERUN	RERUN
RERUN PROCTOR		ΡA	WEIGHT SOIL & MOLD	grams	4180				
PE (RERUN) =	RNIC	8	MOLD	grams	2023				
PD (100)		ß	WEIGHT OF SOIL	grams	2157				
100 + SG	PR(DNE	9	WET DENSITY	lb/ft ³					
	,	R	DRY DENSITY	lb/ft ³					

GAUGE NUMBER	36688	88	TEST NUMBER	~	1	2	3	4	5
MANUFACTURER'S STANDARDS	S STANE	ARDS	DATE						
DENSITY	2935	5	STATION NUMBER	ft.					
MOISTURE	664	-	OFFSET	ft.					
GAUGE STANDARD COUNTS	ARD CO	UNTS	DEPTH BELOW GRADE	ft.					
DENSITY	2902	2	LIFT THICKNESS	in.					
MOISTURE	658	~	DEPTH OF SOURCE	in.					
DB	۽ بيرک	DA	TOTAL DRY DENSITY	lb/ft ³	127				
FROM TABLES	aunas sua (MA	MOISTURE	Ib/ff ³	12				
] ble ioM	DB	DRY DENSITY -3/4	Ib/ft ³	126				
MB = <u>MA (100)</u>	Ы	MB	MOISTURE	%	10				
DB		CA	EXC. MATERIAL + PAN	grams	4910				
CC = CA - CB		CB	PAN	grams	009				
CF = CD - CE		0 C	EXCAVATED MAT.	grams	4310				
CG = CF (100)		00	PLUS 3/4 MAT. + PAN	grams	859				
cc	84 I 1 4/5	CE	PAN	grams	600				
PC = PA - PB		ч	PLUS 3/4 MAT.	grams	259				
PD = PC (0.066)		90 0	PLUS 3/4 MAT.	%	9				
PE = <u>PD (100)</u>		ы	SPECIFIC GRAVITY		2.6				
100 + MB					RERUN	RERUN	RERUN	RERUN	RERUN
RERUN PROCTOR	-	PA	WEIGHT SOIL & MOLD	grams	4180				
PE (RERUN) =	YO.	PB	MOLD	grams	2023				
PD (100)		2	WEIGHT OF SOIL	grams	2157				
100 + SG	PR(ONE	8	WET DENSITY	lb/ft ³	142				
		H	DRY DENSITY	Ib/ft ³					

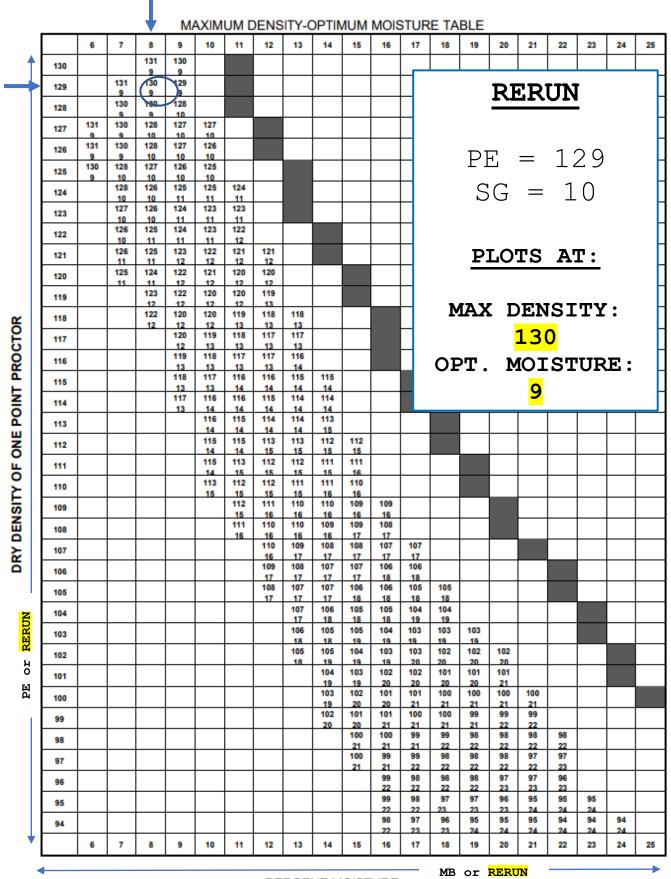
ANDARD	IDARDS				-			0
DENSITY 29 MOISTURE 66 GAUGE STANDARD C(DENSITY 29(DATE						
MOISTURE 66 GAUGE STANDARD C(DENSITY 29(2935	STATION NUMBER	ft.					
GAUGE STANDARD CO	34	OFFSET	ft.					
	DUNTS	DEPTH BELOW GRADE	ft.					
	32	LIFT THICKNESS	in.					
MUISIUKE 00	658	DEPTH OF SOURCE	in.					
DB	DA	TOTAL DRY DENSITY	lb/ft ³	127				
FROM TABLES	MA	MOISTURE	Ib/ft ³	12				
	DB	DRY DENSITY -3/4	Ib/ft ³	126				
MB = <u>MA (100)</u>	MB	MOISTURE	%	10				
DB	CA	EXC. MATERIAL + PAN	grams	4910				
	CB	PAN	grams	600				
CF = CD - CE 🛱 🗜	ខ	EXCAVATED MAT.	grams	4310				
	8	PLUS 3/4 MAT. + PAN	grams	859				
	G	PAN	grams	600				
	Ъ	PLUS 3/4 MAT.	grams	259				
	99 0	PLUS 3/4 MAT.	%	9				
PE = PD (100)	£	SPECIFIC GRAVITY		2.6				
100 + MB				RERUN	RERUN	RERUN	RERUN	RERUN
RERUN PROCTOR	PA	WEIGHT SOIL & MOLD	grams	4180				
	BB	MOLD	grams	2023				
PD (100)	2	WEIGHT OF SOIL	grams	2157				
100 + SG 00 R	8	WET DENSITY	lb/ft ³	142				
	뿝	DRY DENSITY	lb/ft ³	129				

PERCENT MOISTURE

GAUGE NUMBER	36688	38	TEST NUMBER	~	1	2	3	4	5
MANUFACTURER'S S	STANDARDS	ARDS	DATE						
DENSITY	2935	10	STATION NUMBER	ft.					
MOISTURE	664		OFFSET	ft.					
GAUGE STANDARD COUNTS	ID COL	INTS	DEPTH BELOW GRADE	ft.					
DENSITY	2902		LIFT THICKNESS	in.					
MOISTURE	658		DEPTH OF SOURCE	in.					
DB		DA	TOTAL DRY DENSITY	Ib/ff ³	127				
FROM TABLES	sture Sunte	MA	MOISTURE	Ib/ft ³	12				
		BD	DRY DENSITY -3/4	Ib/ft ³	126				
MB = <u>MA (100)</u>		MB	MOISTURE	%	10				
DB		CA	EXC. MATERIAL + PAN	grams	4910				
cc = cA - cB		CB	PAN	grams	600				
CF = CD - CE		S	EXCAVATED MAT.	grams	4310				
CG = <u>CF</u> (100)		C	PLUS 3/4 MAT. + PAN	grams	859				
S	874 I	CE	PAN	grams	600				
PC = PA - PB		СF	PLUS 3/4 MAT.	grams	259				
PD = PC (0.066)		ອວ	PLUS 3/4 MAT.	%	9				
PE = PD (100)		ы	SPECIFIC GRAVITY		2.6				
100 + MB					RERUN	RERUN	RERUN	RERUN	RERUN
RERUN PROCTOR		PA	WEIGHT SOIL & MOLD	grams	4180 4131				
PE (RERUN) =		BB	MOLD	grams	2023 2023				
PD (100)	DG 3	ä	WEIGHT OF SOIL	grams	2157 2108				
100 + SG	PR(8	WET DENSITY	lb/ft ³	142 139				
		H	DRY DENSITY	Ib/ft ³	129				

GAUGE NUMBER	36688	8	TEST NUMBER	2	1	2	3	4	5
MANUFACTURER'S STANDARDS	TANDA		DATE						
DENSITY	2935		STATION NUMBER	ft.					
MOISTURE	664		OFFSET	ft.					
GAUGE STANDARD COUNTS	D COUN	VTS	DEPTH BELOW GRADE	ft.					
DENSITY	2902		LIFT THICKNESS	in.					
MOISTURE	658		DEPTH OF SOURCE	in.					
DB	ې بېړک	DA	TOTAL DRY DENSITY	lb/ff ³	127				
FROM TABLES	ants sua(MA	MOISTURE	Ib/fft ³	12				
	j ble ioM	DB	DRY DENSITY -3/4	lb/ft ³	126				
MB = <u>MA</u> (100)	eifi I	MB	MOISTURE	%	10				
DB		CA	EXC. MATERIAL + PAN	grams	4910				
cc = cA - cB ₹		CB	PAN	grams	009				
CF = CD - CE		cc	EXCAVATED MAT.	grams	4310				
CG = CF (100)		CD	PLUS 3/4 MAT. + PAN	grams	859				
00	BRM 3/4 I	CE	PAN	grams	600				
PC = PA - PB		СF	PLUS 3/4 MAT.	grams	259				
PD = PC (0.066)		CG	PLUS 3/4 MAT.	%	9				
Ne No Van		сн	SPECIFIC GRAVITY		2.6				
A LOO LOO					RERUN	RERUN	RERUN	RERUN	RERUN
RERUN PROCTOR		PA	WEIGHT SOIL & MOLD	grams	4180 4131				
PE (RERUN) =	RNIG	РВ	MOLD	grams	2023 2023				
PD (100)	100	PC	WEIGHT OF SOIL	grams	2157 2108				
100 + SG	PR(DD	WET DENSITY	lb/ff ³	142 139				
		R	DRY DENSITY	lb/ft ³	129				

PROCTOR PROCTOR PA WEIGHT SOIL (100) 0+SG NeiGHT SOIL MOLD 0+SG NE PE WEIGHT OF 0+SG NE PE NEIGHT OF 0-SB NE SA WEIGHT OF 0-SB SA NET WEIGHT NE 0-SB SB PA NE 0-SB SD NE NE 0-SB SB DRY WEIGHT NE 0-SB SB DRY WEIGHT NE 0-SB SB DRY WEIGHT NE 0-SE SD DRY WEIGHT NE	& MOLD			
BI MOLD Image: Sign of the state of th		4180 4131		
Definition Definition Definition MetchtoF MetchtoF MetchtoF MetchtoF SA MetchtoF MetchtoF SA MetchtoF SA MetchtoF SA MetchtoF Molstuff SC Molstuff SC Molstuff Molstuff Molstuff Molstuff	MULLIN	2023 2023		
DOUC PD WET DENS PE DRY DENS PF DRY DENS SA WET WEIGHT SA WET WEIGHT SA WET WEIGHT SA DRY DENS SA WET WEIGHT SA DRY WEIGHT MOISTUR OA OA OPTIMUMOI	SOIL	2157 2108		
PE DRY DENS SA WET WEIGHT SA WET WEIGHT SB DRY DENS SB DRY WEIGHT SC WET WEIGHT SC DRY WEIGHT SC DRY WEIGHT SC DRY WEIGHT MOISTUR SC MOISTUR DRY WEIGHT OA OPTIMUM MOI	NET DENSITY Ib/ft ³	142 139		
SA WET WEIGHT SB WET WEIGHT SC WEIGHT SC WET WEIGHT SC WEIGHT SC WET WEIGHT SC	DRY DENSITY Ib/ft ³	129		
SD SD SD SD SD SD SD SD SD SD SD SD SD S				
SC WEYWEIGHT STOVE DRY WEIGHT SS DRY WEIGHT SS DRY WEIGHT MOISTUR OA OPTIMUM MOI	PAN grams			
SE DRY WEIGHT STOVEISTUR SF MOISTUR 3G MOISTUR MOISTUR				
SF DRY WEIG SF DRY WEIG SF MOISTUR 36 MOISTUR 0A OPTIMUM MOI	4 +			
SF MOISTUR SG MOISTUR SG OA OPTIMUMMOI				
DC ▲ 3G MUISTUR The St OA OPTIMUM MOI	MOISTURE grams			NEED SG
	MOISTURE %			
	'IMUM MOISTURE %			
	PLUS / MINUS TOLER.			
- 5	PASS / FAIL			
Z Z DC MAXIMUM DENSITY	XIMUM DENSITY Ib/ft ³			
	LATIVE DENSITY %			
R z X AVERAGE	AVERAGE DE %		NSPECTOR'S NAME:	
E T TARGET	TARGET %		INSPECTOR'S	
	UALITY INDEX		SIGNATURE:	
S DF WITHIN TOLERANCE	HIN TOLERANCE %		PROJE	PROJECT'S EVALUATION
DG MIN. FOR 100% PAY	I. FOR 100% PAY %		CHECKED BY:	
DH PASS/FAIL	PASS / FAIL YES	NO	DATE:	


					RERUN	RERUN	RERUN	RERUN	RERUN
RERUN PROCTOR		ΡA	WEIGHT SOIL & MOLD	grams	4180 4131				
PE (RERUN) =		BB	MOLD	grams	2023 2023				
PD (100)		ЪС	WEIGHT OF SOIL	grams	2157 2108				
100 + SG	DRG DNE	۵d	WET DENSITY	lb/ft ³	142 139				
)	Эd	DRY DENSITY	Ib/ft ³	129				
SC = SA - SB		ΥS	WET WEIGHT + PAN	grams	2027				
SE = SD - SB		BS	PAN	grams	1811				
SF = SC - SE	зы Вы	SC	WET WEIGHT	grams	216				
SG = <u>SF (100)</u>		SD	DRY WEIGHT + PAN	grams					
SE		ЗS	DRY WEIGHT	grams					
DE = <u>DB (100)</u>		SF	MOISTURE	grams					
DC		SG	MOISTURE	%					
	Т	OA	OPTIMUM MOISTURE	%					
<u>ν</u> - <u>Σ</u> DE	2IO IAV3	OB	PLUS / MINUS TOLER.						
•	e W	8	PASS / FAIL						
	¥ר N∃	BC	MAXIMUM DENSITY	lb/ft ³					
<u>х</u> - т	EA DE	DE	RELATIVE DENSITY	%					
2	N	×	AVERAGE DE	%		INSPECTOR'S NAME	AME:		
	OIT	Т	TARGET	%		INSPECTOR'S			
	רח∀	QL	QUALITY INDEX			SIGNATURE:			
	AVE	DF	WITHIN TOLERANCE	%			PROJECT'S EVALUATION	EVALUATION	
	тс	DG	MIN. FOR 100% PAY	%		CHECKED BY:			
	г	Ы	PASS / FAIL	YES	NO	DATE:			
1									

WEIGHT SOIL & MOLDgrams41804131MOLDgrams20232023WEIGHT OF SOILgrams21572108WET DENSITYb/ft ³ 142139DRY DENSITYb/ft ³ 142139WET WEIGHT + PANgrams20272027WET WEIGHT + PANgrams20272027WET WEIGHT + PANgrams20112027DRY WEIGHT + PANgrams2011200DRY WEIGHTgrams2011200DRY WEIGHTgrams2011200DRY WEIGHTgrams2011200DRY WEIGHTgrams2011200DRY WEIGHTgrams2011200DRY WEIGHTgrams2011200DRY WEIGHTgrams2011200DRY WEIGHTgrams2011200DRY WEIGHTgramsgrams2011DRY WEIGHTgramsgrams2011DRY WEIGHTgramsgrams2011DRY WEIGHTgramsgrams2011DRY WEIGHTgramsgrams2011DRY WEIGHTgramsgrams2011DRY WEIGHTgramsgrams2011DRY						RERUN	RERUN	RERUN	RERUN	RERUN
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	RERUN PROCTOR				grams					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PE (RERUN) =		PB	MOLD	grams	2023 2023				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PD (100)		РС		grams	2157 2108				
$ = SA - SB \\ = SA - SB \\ = SA - SB \\ = SC - SE \\ = SC - SC \\ = $	100 + SG		DD	WET DENSITY	Ib/ft ³					
$ = SA \cdot SB \\ = SA \cdot SB \\ = SA \cdot SB \\ = SB $			PE	DRY DENSITY	Ib/ft ³	129				
	SC = SA - SB		SA	<u>.</u>	grams	2027				
Image: Discription of the problem o	SE = SD - SB		SB	PAN	grams	1811				
Image: SD DRY WEIGHT + PAN grams 2011 SE DRY WEIGHT grams 2011 SF DRY WEIGHT grams 2000 Image: SC SF DRY WEIGHT grams 2000 Image: SC SC SF MOISTURE grams grams 2000 Image: SC SC MOISTURE Grams SC Grams SC MOISTURE Grams SC MOISTURE Grams SC MOISTURE MOISTURE <th>SF = SC - SE</th> <th></th> <th>SC</th> <th>WET WEIGHT</th> <th>grams</th> <th>216</th> <th></th> <th></th> <th></th> <th></th>	SF = SC - SE		SC	WET WEIGHT	grams	216				
Image: Discription of the problem o	SG = <u>SF (100)</u>		SD		grams	2011				
S S MOISTURE grams Gams S S SG MOISTURE grams Gams S MOISTURE grams S S SG MOISTURE MOISTURE grams S S MOISTURE grams S MOISTURE grams S S MOISTURE grams S S MOISTURE Grams S	SE		SE	DRY WEIGHT	grams	200				
DC SG MOISTURE % MOISTURE MOISTURE % MOISTURE % MOISTURE MOISTURE % MOISTURE MOISTURE MOISTURE MOISTURE MOISTURE MOISTURE MOISTURE MOISTURE MOISTURE	DE = <u>DB</u> (100)		SF	MOISTURE	grams					
Image: line bit in the section in t	DC		SG	MOISTURE	%					
- 2 0 PLUS / MINUS TOLER. 0 PLUS / MINUS TOLER. 5 5 0 PASS / FAIL 0 PASS / FAIL 0 N 0 D PASS / FAIL D PASS / FAIL 0 0 N 0 D PASS / FAIL D PASS / FAIL 0 0 0 N D PASS / FAIL D PASS / FAIL D 0 <th></th> <th>.1</th> <th>OA</th> <th></th> <th>%</th> <th></th> <th></th> <th></th> <th></th> <th></th>		.1	OA		%					
5 3 0C PASS/FAIL Image: Second conduction of the second cond conduction of the second conduction of the s	. Σ DE	SIO IAV3	OB							
X Image: line sector settor sector sector settor sector settor sector settor	5	e W	8	PASS / FAIL						
X I I X I I R I I R AVERAGE DE % INSPECTOR'S NAM I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <thi< th=""> I <</thi<>			DC	MAXIMUM DENSITY	Ib/ft ³					
Non-construction Non-construction Non-construction Image:	×		BE	RELATIVE DENSITY	%					
T TARGET % INSPECTOR'S QL QUALITY INDEX % SIGNATURE: DF WITHIN TOLERANCE % CHECKED BY: DG MIN. FOR 100% PAY % CHECKED BY:		N	×	AVERAGE DE	%		INSPECTOR'S NAM	ME:		
QL QUALITY INDEX SIGNATURE: DF WITHIN TOLERANCE % SIGNATURE: DG MIN. FOR 100% PAY % CHECKED BY: DH PASS / EAII VES NO		OIT	Г	TARGET	%		INSPECTOR'S			
DF WITHIN TOLERANCE % DG MIN. FOR 100% PAY % DH PASS / EAII VES		ר∩∀	٩L	QUALITY INDEX			SIGNATURE:			
DG MIN. FOR 100% PAY %		AVE	DF		%			PROJECT'S EV#	ALUATION	
DH DASS/FAIL VES NO		тс	DG	MIN. FOR 100% PAY	%		CHECKED BY:			
		г	DH	PASS / FAIL	YES	NO	DATE:			

WEIGHT SOIL & MOLD grams 4180 4131 1 MOLD grams 2157 2023 2023 2023 WEIGHT OF SOIL grams 2157 2108 1 1 WEIGHT OF SOIL grams 2157 2108 1 1 WEIGHT PAN grams 2157 2108 1 1 1 WET WEIGHT + PAN grams 216 1						RERUN	RERUN	RERUN		RERUN	RERUN
Image: Construction of the construc	RERUN PROCTOR				grams						
Image: Construction of the construc	PE (RERUN) =		PB	MOLD	grams						
0 Prover DENSITY Ib/ft ³ 142 139 I 1	PD (100)		РС	WEIGHT OF SOIL	grams						
Fe DRY DENSITY Ib/ft ³ 129 I SA WET WEIGHT + PAN grams 2027 1 SB PAN grams 2027 1 1 SB PAN grams 2027 1 1 SC WET WEIGHT + PAN grams 2027 1 1 SC WET WEIGHT + PAN grams 2011 1 1 SC WEI WEIGHT PAN grams 2011 1 1 SF MOISTURE grams 2011 1 1 1 SG MOISTURE grams 2011 grams 2011 1 1 GB PLUS / MINUS TOLER grams 2011 1 </th <th>100 + SG</th> <th></th> <th>DD</th> <th></th> <th>lb/ft³</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	100 + SG		DD		lb/ft ³						
I = I = I = I = I = I = I = I = I = I =			PE	DRY DENSITY	Ib/ft ³	129					
SC WET WEIGHT grams 1811 SC WET WEIGHT + PAN grams 216 I SC WET WEIGHT grams 2011 I SC WET WEIGHT grams 2011 I SF DRY WEIGHT grams 2011 I SF MOISTURE grams 2011 I I SG MOISTURE grams 2000 I I SG MOISTURE grams 2001 I I SG MOISTURE grams 2001 I I J Dig Lussing MOISTURE grams 2001 I I J Dig Lussing MOISTURE grams 2001 I I J Dig Lussing J J J J J J J Dig Lussing J J J J J J J Dig Lussing Lussing Lussing Lussigen Lussingen Lussingen<	SC = SA - SB		SA		grams	2027					
Display C WeT WEIGHT grams 216 216 1 SD DRY WEIGHT + PAN grams 2011 216 1 1 SD DRY WEIGHT + PAN grams 2011 grams 2011 1 1 SE DRY WEIGHT grams 2011 grams 2011 1 </th <th>SE = SD - SB</th> <th></th> <th>SB</th> <th>PAN</th> <th>grams</th> <th>1811</th> <th></th> <th></th> <th></th> <th></th> <th></th>	SE = SD - SB		SB	PAN	grams	1811					
Image: sign of the sector sign of the s	SF = SC - SE		SC		grams	216					
Image: Distribution of the image in the image inthe image in the image in the image in the	SG = SF (100)		SD		grams	2011					
S S MOISTURE grams 16 S SG MOISTURE grams 16 S SG MOISTURE % 16 S SG MOISTURE % 16 S OB PLUS / MINUS TOLER. % 16 D DC PASS / FAIL 16 17 D AVERAGE DE % 16 17 D 17 17	SE		SE	DRY WEIGHT	grams	200					
DC SG MOISTURE % MOISTURE MOISTURE % MOISTURE % MOISTURE % MOISTURE % MOISTURE MOISTURE % MOIS	DE = <u>DB (100)</u>		SF	MOISTURE	grams	16					
Image: line bit in the structure in the bit in the structure in the bit in the structure in the bit in the structure in the bit in the	DC		SG	MOISTURE	%						
= E DE PLUS/MINUS TOLER. DE PLUS/MINUS TOLER. DE PLUS/MINUS TOLER. DE PASS/FAIL		.1	OA	OPTIMUM MOISTURE	%						
5 2 0C PASS/FAIL Description PASS/FAIL X 1 2 Maximum Density Ib/M³ Description Maximum Density Ib/M³ Description Ib/M³ Ib	. '	SIO IAV3	OB								
X Lint Ibitit X Lint Ibitit No DE MAXIMUM DENSITY Ibitit R DE RELATIVE DENSITY % Ibitit R DE RELATIVE DENSITY % Ibitit R AVERAGE DE % Inspectors: NAM Inspector: Maximum Density % Inspectors: NAM Intervence % Inspectors: NAM DF WITHIN TOLERANCE % Inspectors: SIGNATURE: DH PASS/FAIL YES NO Date:	'	e M	8	PASS / FAIL							
X Image: Signature construction of the construction of t			DC	MAXIMUM DENSITY	lb/ft ³						
Number Name Number Name Inspectors name T Average De % Inspectors name T Target % Inspectors QL QUALITY INDEX % SIGNATURE: DF WITHIN TOLERANCE % CHECKED BY: DH PASS/FAIL YES NO	×		BE	RELATIVE DENSITY	%						
T TARGET % INSPECTOR'S QL QUALITY INDEX % INSPECTOR'S DF WITHIN TOLERANCE % CHECKED BY: DB MIN. FOR 100% PAY % CHECKED BY: DH PASS / FAIL YES NO DATE:		N	×		%		INSPECTOR'S NA	ME:			
QL QUALITY INDEX SIGNATURE: DF WITHIN TOLERANCE % SIGNATURE: DG MIN. FOR 100% PAY % CHECKED BY: DH PASS / FAIL YES NO		011	Т	TARGET	%		INSPECTOR'S				
DF WITHIN TOLERANCE % DG MIN. FOR 100% PAY % DH PASS / FAIL YES NO		רח∀	۵L	QUALITY INDEX			SIGNATURE:				
DG MIN. FOR 100% PAY % DH PASS / FAIL YES NO		AVE	DF	WITHIN TOLERANCE	%			PROJECTS	S EVALUAT	LION	
DH PASS/FAIL YES NO		110	DG	MIN. FOR 100% PAY	%		CHECKED BY:				
		г	Ы	PASS / FAIL	YES	NO	DATE:				

$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$					RERUN	RERUN	RERUN	RERUN	RERUN
(RERUN)= \overline{PB} MOLD grams 2023 2023 2023 10 100 + Sig \overline{PD} WEIGHT OF SOIL \overline{PBM} \overline{PE} WEIGHT OF SOIL \overline{PBM} 2157 2108 \overline{PD} 100 + Sig \overline{PD} WEIGHT OF SOIL \overline{PBM}		ΡA		grams					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LNI(PB	MOLD	grams					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5 PC	РС	WEIGHT OF SOIL	grams					
$ = \frac{5A \cdot SB}{SB} $ $ = \frac{2A \cdot SB}{SB} $ $ = 2A$	INC	DD		Ib/ff ³					
= SA - SB = SD - SD = SP - SD = SD = SD - SD = SD = SD = SD - SD = SD =		PE	DRY DENSITY	Ib/ft ³	129				
= SD - SB $= SC - SE$ $= SE (100)$ SE $= DR WEIGHT PAN grams 2011 Grams 201 Grams 200 Grams 200 Grams 20 Grams 200 Grams 20 Grams 20 Grams 20 Grams 20 Grams 20 Grams 2$	SA - SB	ΥS	+	grams	2027				
= SC - SE Ref weight SC Wet weight grams 216 N = SF (100) SE DRY WEIGHT + PAN grams 2011 N N = DB (100) SE DRY WEIGHT grams 2011 N N = DB (100) SE MOISTURE grams 2011 N N DC SG MOISTURE grams 2000 N N DC MOISTURE % MOISTURE % N N N T E MOISTURE % MOISTURE % N N N N T E MOISTURE % MOISTURE % N	a	SB	PAN	grams	1811				
Sb DRY WEIGHT + PAN grams 2011 I Sc DRY WEIGHT grams 2000 I Sc DRY WEIGHT grams 2000 I Sc DRY WEIGHT grams 2000 I Sc MOISTURE grams 16 I I Sc MOISTURE % MOISTURE % I I Sc MOISTURE % MOISTURE % I I I Sc MOISTURE % MOISTURE % I <td< th=""><th>BIE</th><th>SC</th><th></th><th>grams</th><th>216</th><th></th><th></th><th></th><th></th></td<>	BIE	SC		grams	216				
SE DRY WEIGHT grams 200 S S MOISTURE grams 200 S MOISTURE grams 16 1 S MOISTURE % MOISTURE % 16 MOISTURE MO PLUS/MINUSTOLER % 8 16 1 MOISTURE MO PLUS/MINUSTOLER % 8 16 1 1 MOISTURE MO PLUS/MINUSTOLER % 8 16 1 1 MONSTURE MO PLUS/MINUSTOLER % 8 1 1 1 MONSTURE MO PLUS/MINUSTOLER % 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E D	SD		grams	2011				
Sr MOISTURE grams 16 SG MOISTURE % 16 SG MOISTURE % 16 SG MOISTURE % 16 MOISTURE % PLUS/MINUS TOLER. % OB PLUS/MINUS TOLER. % 16 OC PASS/FAIL % 16 DE RELATIVE DENSITY 16/ft ³ 1 MOISTURE % No 1 DE RELATIVE DENSITY 10/ft ³ 1 MUHIN TOLERANCE % 1 1 MIHIN TOLERANCE % 1 1 MIHIN TOLERANCE % 1 1	VOI	SE	DRY WEIGHT	grams	200				
DC SG MOISTURE % SG MOISTURE % SG MOISTURE % SG SG MOISTURE % SG <	S.	SF	MOISTURE	grams	16				
	DC	SG	MOISTURE	%	8				
= E DE PLUS / MINUS TOLER. DE PLUS / MINUS TOLER. 5 5 OC PASS / FAIL DC PASS / FAIL X I DC PASS / FAIL DC PASS / FAIL X I DC PASS / FAIL DC PASS / FAIL X I DC PASS / FAIL DC PASS / FAIL X DC PASS / FAIL DC PASS / FAIL DC X DC PASS / FAIL DC PASS / FAIL DC DC X DC PASS / FAIL DC PASS / FAIL DC DC DC X DC PASS / FAIL DC PASS / FAIL DC	.1	OA		%					
5 2 0 PASS/FAIL 1 X 1 2 Maximum Density lb/h³ 1 X 1 1 Maximum Density lb/h³ 1 1 R DE ReLative Density lb/h³ 1 1 1 1 R X Average De % 1 <th1< th=""> <th1< th=""> <t< th=""><th></th><th>OB</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th1<></th1<>		OB							
X L Maximum Density Ib/ft ³ R DE RELATIVE DENSITY Ib/ft ³ R DE RELATIVE DENSITY % Inspectors Maximum Density % Inspectors % Inspectors Inspectors % Inspectors Inspectors % Inspectors Inspectors % Inspectors	- 5 -	8	PASS / FAIL						
X I B RELATIVE DENSITY % R N NERATIVE DENSITY % NERATIVE DENSITY R X AVERAGE DE % INSPECTOR'S NAM I TARGET % INSPECTOR'S NAM DF NTHIN TOLERANCE % INSPECTOR'S NAM	NE	B	MAXIMUM DENSITY	lb/ff ³					
R AVERAGE DE % INSPECTOR'S NAM T TARGET % INSPECTOR'S NAM QL QUALITY INDEX % INSPECTOR'S INS	×	DE	RELATIVE DENSITY	%					
TTARGET%INSPECTOR'SQLQUALITY INDEX%SIGNATURE:DFWITHIN TOLERANCE%	æ	×		%		INSPECTOR'S NA	ME:		
QL QUALITY INDEX SIGNATURE: DF WITHIN TOLERANCE %	OIT	Т	TARGET	%		INSPECTOR'S			
DF WITHIN TOLERANCE %	rυA	۵L	QUALITY INDEX			SIGNATURE:			
3	AVE	DF	WITHIN TOLERANCE	%			PROJECT'S EVALUATION	ALUATION	
DG MIN. FOR 100% PAY % CHECKED BY:	1TC	DG	MIN. FOR 100% PAY	%		CHECKED BY:			
DH PASS/FAIL YES NO DATE:	г	Н		YES	ON	DATE:			

					RERUN	RERUN	RERUN	RERUN	RERUN
RERUN PROCTOR		ΡA	WEIGHT SOIL & MOLD	grams	4180 4131				
PE (RERUN) =		PB	MOLD	grams	2023 2023				
PD (100)		ЪС	WEIGHT OF SOIL	grams	2157 2108				
100 + SG	DNG DNE	۵d	WET DENSITY	lb/ft ³	142 139				
		H	DRY DENSITY	lb/ft ³	129(129)				
SC = SA - SB		SA	WET WEIGHT + PAN	grams	2027				
SE = SD - SB		SB	PAN	grams	1811				
SF = SC - SE	зы зы	SC	WET WEIGHT	grams	216				
SG = <u>SF (100)</u>		as	DRY WEIGHT + PAN	grams	2011				
SE		SE	DRY WEIGHT	grams	200				
DE = <u>DB (100)</u>		SF	MOISTURE	grams	16				
DC		SG	MOISTURE	%	8				
	.T.	OA	OPTIMUM MOISTURE	%					
<u>, Σ DE</u>	2IO	OB	PLUS / MINUS TOLER.						
•	e M	8	PASS / FAIL						
	NF N∃	В	MAXIMUM DENSITY	lb/ft ³					
- <u>×</u> - ⊥	EA DE	DE	RELATIVE DENSITY	%					
2	N	×	AVERAGE DE	%		INSPECTOR'S NAME	ME:		
	OIT	Т	TARGET	%		INSPECTOR'S			
	רח⊎	QL	QUALITY INDEX			SIGNATURE:			
	AVE	DF	WITHIN TOLERANCE	%			PROJECT'S EVALUATION	NLUATION	
	1TC	DG	MIN. FOR 100% PAY	%		CHECKED BY:			
	г	ЫН	PASS / FAIL	YES	NO	DATE:			
1									

PERCENT MOISTURE

					RERUN	RERUN	RERUN RERUN	RERUN
RERUN PROCTOR		ΡA	WEIGHT SOIL & MOLD	grams	4180 4131			
PE (RERUN) =		PB	MOLD	grams	2023 2023			
PD (100)		ЪС	WEIGHT OF SOIL	grams	2157 2108			
100 + SG	ЭИС	٥d	WET DENSITY	lb/ft ³	142 139			
		PE	DRY DENSITY	lb/ft ³	129 129			
SC = SA - SB		SA	WET WEIGHT + PAN	grams	2027		Chocification	
SE = SD - SB		SB	PAN	grams	1811		SPECT FICE CTOIL	
SF = SC - SE	зы ЭЫЯ	SC	WET WEIGHT	grams	216		% Moisture (MB)	
SG = <u>SF (100)</u>		as	DRY WEIGHT + PAN	grams	2011			
SE		SE	DRY WEIGHT	grams	200		Must De Within +3 and -4 of Optimum	
DE = <u>DB (100)</u>		SF	MOISTURE	grams	16			
DC		SG	MOISTURE	%	œ			
	.Т. Ц	OA	OPTIMUM MOISTURE	%	6		Optimum Moisture = 0%	
<u>, Σ DE</u>	2IO IAV3	OB	PLUS / MINUS TOLER.		+3/-4		9+3=12	
•	e W	8	PASS / FAIL				9-4=5	
	N∃ N∃	g	MAXIMUM DENSITY	Ib/ft ³	130			
<u>х - т</u>		BE	RELATIVE DENSITY	%			kange = 5% to 12%	
2	N	×	AVERAGE DE	%		INSPECTOR'S NAME		
	OIT	T	TARGET	%		INSPECTOR'S		
	רח∀	QL	QUALITY INDEX			SIGNATURE:		
	AVE	DF	WITHIN TOLERANCE	%		PF	PROJECT'S EVALUATION	
	тс	DG	MIN. FOR 100% PAY	%		CHECKED BY:		
	г	НО	PASS / FAIL	YES	ON	DATE:		
•								

GAUGE NUMBER	36688	38	TEST NUMBER		1	2	3	4	5
MANUFACTURER'S STANDARDS	STAND.	ARDS	DATE						
DENSITY	2935	2	STATION NUMBER	ft.					
MOISTURE	664		OFFSET	ft.					
GAUGE STANDARD COUNTS	RD COL	INTS	DEPTH BELOW GRADE	ft.					
DENSITY	2902		LIFT THICKNESS	in.					
MOISTURE	658		DEPTH OF SOURCE	in.					
DB		DA	TOTAL DRY DENSITY	lb/ft ³	127		IOM %	MOISTURE (MB)	<u></u>
FROM TABLES		MA	MOISTURE	Ib/ft ³	12				
] bla sioM	DB	DRY DENSITY -3/4	lb/ft ³	126		+3/-4 0	of Optimum	ດ 5
MB = <u>MA (100)</u>		MB	MOISTURE	%	10				
DB		CA	EXC. MATERIAL + PAN	grams	4910		ļ	Rang	
CC = CA - CB		CB	PAN	grams	009		0 %	to 12%	
CF = CD - CE		8 S	EXCAVATED MAT.	grams	4310				
CG = <u>CF</u> (100)		C	PLUS 3/4 MAT. + PAN	grams	859				
CC	874 I	CE	PAN	grams	600				
PC = PA - PB		Ч	PLUS 3/4 MAT.	grams	259				
PD = PC (0.066)		90 0	PLUS 3/4 MAT.	%	9				
PE = PD (100)		ы	SPECIFIC GRAVITY		2.6				
100 + MB					RERUN	RERUN	RERUN	I RERUN	RERUN
RERUN PROCTOR		PA	WEIGHT SOIL & MOLD	grams	4180 4131				
PE (RERUN) =	NIC	PB	MOLD	grams	2023 2023				
PD (100)		PC	WEIGHT OF SOIL	grams	2157 2108				
100 + SG	PR(DD	WET DENSITY	lb/ft ³	142 139				
		PE	DRY DENSITY	lb/ft ³	129 129				

					RERUN	RERUN	RERUN	RERUN	RERUN
RERUN PROCTOR		ΡA	WEIGHT SOIL & MOLD	grams	4180 4131				
PE (RERUN) =		ΡB	MOLD	grams	2023 2023				
PD (100)		ЪС	WEIGHT OF SOIL	grams	2157 2108				
100 + SG	BR(۵d	WET DENSITY	lb/ft ³	142 139				
		PE	DRY DENSITY	lb/ft ³	129 129				
SC = SA - SB		SA	WET WEIGHT + PAN	grams	2027				
SE = SD - SB		SB	NAN	grams	1811				
SF = SC - SE	зы зы	SC	WET WEIGHT	grams	216				
SG = SF (100)		OS	DRY WEIGHT + PAN	grams	2011				
L		SE	DRY WEIGHT	grams	200				
DE = DB (100)		SF	MOISTURE	grams	16				
DC		SG	MOISTURE	%	8				
	.T.	OA	OPTIMUM MOISTURE	%	6				
<u>, Σ DE</u>	210 IAV3	OB	PLUS / MINUS TOLER.		+3/-4				
I I	e W	8	PASS / FAIL		PASS				
	N∃ N∃	З	MAXIMUM DENSITY	lb/ft ³	130				
01 × - T	EA DE	閚	RELATIVE DENSITY	%	97				
2	Ž	×	AVERAGE DE	%		INSPECTOR'S NAME:	AME:		
	оіт	Т	TARGET	%		INSPECTOR'S			
	ר∩∀	QL	QUALITY INDEX			SIGNATURE:			
	AVE	DF	WITHIN TOLERANCE	%			PROJECT'S EVALUATION	ALUATION	
	110	DG	MIN. FOR 100% PAY	%		CHECKED BY:			
	г	Н	PASS / FAIL	YES	NO	DATE:			

REPORT FRAUD, WASTE AND ABUSE

CALL THE WVDOT OFFICE OF INVESTIGATIONS HOTLINE 1-866-206-2728

MAIL:

WVDOT OFFICE OF INVESTIGATIONS 1900 KANAWHA BOULEVARD EAST BUILDING #5 ROOM 503 CHARLESTON, WV 25305

EMAIL: DOT.Fraud@wv.gov

