WEST VIRGINIA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS MATERIALS CONTROL, SOILS AND TESTING DIVISION

 MATERIALS PROCEDURE| 1.0 | SCOPE |
| :---: | :---: |
| 1.1 | This procedure provides a method of estimating the percentage of each lot or sublot of material, product, item of construction, or completed construction which may be expected to be within specified tolerances. |
| 2.0 | DEFINITIONS |
| 2.1 | $\mathrm{Xi}=$ the individual values under consideration. |
| 2.2 | $\mathrm{n}=$ the number of individual values under consideration. |
| 2.3 | $X=$ the arithmetic mean, or average of values under consideration. X may be expressed as Xi / n, or the sum of the individual values divided by the number of individual values. |
| 2.4 | $R=$ the range, or the difference between the largest and smallest values under consideration. |
| 2.5 | $Q=$ Quality Index, found by subtracting the average, X, from the upper or lower tolerance limit and dividing by the range, R. |
| 2.6 | $\mathrm{P}=$ Percent within tolerance . |
| 3.0 | PROCEDURE |
| 3.1 | Locate n sampling positions on the lot, or sublot, in a random manner. |

3.2 Make a measurement at each position, or take a test portion and make the measurement on the test portion.
3.3 Average all measurements to find X.
$3.4 \quad$ In cases where n is less than 10, find R by subtracting the smallest value from the largest value in the group of measurements.
3.5 In cases where n is equal to or greater than 10, arrange the measurements in the order in which they were taken and divide into subgroups of 5 each. Find R for each subgroup, add these values, and divide by the number of subgroups to find R.
3.6 Find the Upper Quality Index, QUX by subtracting the-average, X, of the measurements from the upper tolerance limit, U, fnd dividing the result by R or R.

$$
\mathrm{Qu}=\mathrm{v}(\text { Equation } 1)
$$

3.4 Find the Lower Quality Index, QL, by subtracting the lower tolerance limit, L, from the average, X , and dividing by R or R.
QL = R or -R (Equation 2)
3.8 Estimate the percentage, Pus that will fall within the upper tolerance limit by entering the-tables of Attachment I, with Qu, using the column appropriate to the total number, n , . of measurements.
3.9 Estimate the percentage, PL, that will fall within the lower tolerance limit by entering the tables of Attachment 1, with QLS using the column appropriate to the total number, n , of measurements.

In cases where both Upper, U, and Lower, L, tolerance limits are concerned, the total percentage, P , of the lot or sublot estimated to fall wi-.thin tolerances is the sum of the percentage, Pu , within the upper limit, U , and the percentage, PL, within the lower limit, L, subtracted from 100.

$$
\text { P (Pu + PL) - } 100 \text { (Equation 3) }
$$

-				E FOR	ESTIMATI	able PERCEN bange met vised	-2 OF LOT 00) 68)	NITHIN	LERANCE	MP 10 ORIGI REISS ATTAC PAGE	00.20 L ISSU D: JAN ENT 1 of 4	CE: JU RY 1995	1977
Percent Within Toleranc:	Negative values of Q_{U} or Q_{L}												
	$\mathrm{n}=3$	$\mathrm{n}=4$	$n=5$	$\mathrm{n}=6$	$n=7$	$\mathrm{n}=10^{\text {a }}$	$\mathrm{n}=15^{\text {* }}$	$\mathrm{n}=25$ *	$n=30^{*}$	$n=35^{*}$	$n=40$ *	$n=50$ m	$n=60^{*}$
20	0.49	0.40	0.36	0.33	0.31	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36
19	0.50	0.42	0.37	0.34	0.32	0.37	0.37	0.37	0.37	0.37	0.38	0.36	0.38
18	0.51	0.43	0.38	0.35	0.33	0.39	0.39	$0.39^{\prime \prime}$	0.39	0.39	0.39	0.39	0.39
17	0.52	0.44	0.40	0.36	0.34	0.40	0.40	0.41	0.41	0.41	0.41	0.41	0.41
16	0.53	0.46	0.41	0.38	0.36	0.42	0.42	0.42	0.43	0.43	0.43	0.42	0.L. 2
15	0.54	0.47	0.42	0.39	0.37	0.43	0.44	0.44	0.44	0.44	0.44	0.44	0.44
14	0.54	0.48	0.44	0.40	0.38	0.45	0.45	0.46	0.46	0.46	0.46	0.46	0.46
13	0.55	0.50	0.45	0.42	0.40	0.47	0.47	0.47	0.48	0.48	0.48	0.48	0.48
12	0.56	0.51	0.46	0.43	0.41	0.48	0.49	0.50	0.50	0.50	0.50	0.50	0.50
11	0.57	0.52	0.48	0.45	0.43	0.50	0.51	0.52	0.52	0.52	0.52	0.52	0.52
10	0.58	0.54	0.50	0.46	0.44	0.52	0.53	0.54	0.54	0.54	0.54	0.55	0.55
9	0.58	0.55	0.51	0.148	0.46	0.54	0.55	0.56	0.57	0.57	0.57	0.57	0.57
8	0.59	0.56	0.53	0.49	0.47	0.57	0.58	0.59	0.59	0.59	0.59	0.60	0.60
7	0.59	0.58	0.55	0.51	0.49	0.59	0.61	0.61	0.62	0.62	0.62	0.62	0.62
6	0.59	0.59	0.57	0.53	0.51	0.62	0.63	0.64	0.65	0.65	0.66	0.66	0.65
5	0.60	0.60	0.58	0.55	0.53	0.64	0.66	0.68	0.68	0.69	0.69	0.70	0.70
4	0.60	0.62	0.60	0.57	0.55	0.68	0.68	0.72	0.73	0.73	0.73	0.74	0.74
3	0.60	0.63	0.62	0.59	0.58	0.71	0.74	0.77	0.78	0.78	0.78	0.79	0.79
2	0.60	0.64	0.65	0.62	0.61	0.76	0.80	0.83	0.84	0.85	0.85	0.85	0.86
1	0.60	0.66	0.66	0.65	0.65	0.82	0.88	0.93	0.94	0.95	0.95	0.97	0.97
When $n \geqq 10$, the samples are arranged consecutively in subgroups of five, the range (R) of each subgroup determined, and then the average range (\mathbb{R}) of all subgroups computed for use in finding Q_{U} or Q_{L}.													

			table for estimating percent of lot within tolekance (RANGE METHOO) (Revised 2/68)							```MP 106.00.20 ORIGINAL ISSUANCE: JULY }197 REISSUED: JANUARY 1995 ATTACHMENT : PAGE 3 of 4```			
Percent Within Tolerance	positive values of O_{0} or O_{L}												
	n=3	n* 4	n=5	$n=6$	n=7	n=10*	n=15*	$n=25$ *	n=30*	n=35 ${ }^{\text {\% }}$	n=40*	no50*	n+60\%
79	0.48	0.39	0.34	0.31	0.29	0.34	0.34	0.34	0.34	0.34	0.35	0.35	0.35
73	0.47	0.38	0.33	0.30	0.28	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
77	0.46	0.36	0.32	0.29	0.27	0.32	0.32	0.31	0.31	0.32	0.32	0.32	0,32
76	0.44	0.35	0.30	0.28	0.26	0.30	0.30	0.30	0.30	0.30	0.30	0.30	$0.30{ }^{\prime}$
75	0.43	0.34	0.29	0.27	0.25	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29
74	0.41	0.32	0.28	0.25	0.24	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
73	0.40	0.31	0.27	0.24	0.23	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.27
72	0.39	0.30	0.25	0.23	0.22	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
71	0.37	0.28	0.24	0.22	0.20	0.24	0.24	0.24	0.24	0. 24	0.24	0.24	0.24
70	0.36	0.27	0.23	0.21	0.19	0.22	0.23	0.23	0.23	0.23	0.23	0.23	0.23
69	0.34	0.26	0.22	0.20	0.18	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
68	0.32	0.24	0.21	0.19	0.17	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
67	0.31	0.23 .	0.19	0.18	0.16	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
66	0.29	$0.21{ }^{\circ}$	0.18	0.17	0.15	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
65	0.27	0.20	0.17	0.16	0.14	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
64	0.26	0.19	0.16	0.15	0.13	0.15	0.16	0.15	0.15	0.15	0.15	0.15	0.15
63	0.24	0.17	0.15	0.13	0.12	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
62	0.22	0.16	0.14	0.12	0.11	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
61	0.20	0.15	0.13	0.11	0.10	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
60	0.19	0.13	0.11	0.10	0.09	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
55	0.09	0.07	0.06	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	*When $n \geq 10$, the samples are arranged consecutively in subgroups of five, the range (R) of each subgroup determined, and then the average range ($\overline{\mathrm{R}}$) of all subgroups computed for use in finding Q_{U} or Q_{L}.												

